
GENERALIZED ID/LP GRAMMAR:
A FORMALISM FOR PARSING LINEARIZATION-BASED HPSG GRAMMARS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Michael W. Daniels, B.A., B.S., M.A.

The Ohio State University
2005

Dissertation Committee:
Professor W. Detmar Meurers, Advisor
Professor Christopher H. Brew
Professor Carl J. Pollard

Copyright by
Michael W. Daniels
2005

ABSTRACT

This thesis motivates and describes the Generalized Immediate Dominance/Linear Prece-
dence (GIDLP) formalism: a formalism capable of serving as a processing backbone
for linearization-based grammars in the Head Driven Phrase Structure Grammar (HPSG)
framework. Complementing the work on the formalism, the thesis defines and implements
an efficient parsing algorithm for GIDLP grammars.

Representing a prominent tradition within HPSG, linearization-based HPSG assumes
that the domain of word order can be larger than the local tree. This supports elegant
and general linguistic analyses for (relatively) free word order languages, including the
possibility of licensing discontinuous constituents.

For processing with an HPSG grammar, most systems depend on parsing algorithms
that make use of a phrase structure backbone – a part of the grammar that has been set
aside and given a distinguished role in the parsing process – thereby contrasting with those
that view parsing as a general constraint solving task, where general methods for logical
reasoning are to be applied to the constraints present in an HPSG grammar. Processing
backbones support efficient parsing algorithms, but they restrict the class of HPSG theo-
ries that can be encoded to those employing a phrase structure backbone, which excludes
linearization-HPSG grammars.

The GIDLP formalism solves the dilemma between the desire to encode linguistically
general and elegant linearization-HPSG analyses and the need for a processing backbone.
GIDLP allows linguists to specify grammars with linear precedence constraints that operate
within explicitly declared word order domains extending beyond the local tree as well as
immediate dominance rules in which the grammar writer can arrange the right-hand side as
to minimize the number of parsing hypotheses that must be explored. The GIDLP parsing
algorithm developed in the thesis supports efficient processing by making direct use of
linear precedence constraints during parsing.

iii

Dedicated to my parents

iv

ACKNOWLEDGMENTS

No academic work, least of all a dissertation, is written in a vacuum, and it is my pleasure
to thank those people who have helped me along the way. To distill six years into a short set
of thank-yous is a daunting process, and I apologize in advance to those I have accidentally
omitted.

I first thank my advisor, Detmar Meurers, for supporting and counseling me on count-
less levels, for serving as a source of motivation when I needed it, and for copious amounts
of feedback on this thesis and everything else I’ve written.

I thank Chris Brew for serving on my committee, providing feedback, and for always
getting me to think about the bigger picture – how my research would fit into the field as a
whole.

I thank Carl Pollard as well for serving on my committee, for his insight and feedback
on the most theoretical aspects of this thesis, and for leading the coordination seminar in
AU00/WI01, in which I learned about linguistics than I had in any other class.

I thank Jerry Morgan for getting me interested in linguistics in the first place, during
Fall 1995, and for teaching my very first class in computational linguistics. I similarly
thank Georgia Green for introducing me to syntax and for serving as my undergraduate
advisor. It was primarily through the experiences I had with them that I decided to pursue
graduate study in linguistics – a decision I have never regretted.

I thank my three quarters’ worth of LING 201 students for reminding me of what it’s
like to see linguistics from the outside.

Portions of this research have been presented at NLULP02, HPSG04, and COLING04.
I thank the audiences at those conferences and all others who have provided comments and
feedback, most notably Chris Brew, Wesley Davidson, Paul Davis, Dale Gerdemann, Jirka
Hana, Detmar Meurers, Stefan Müller, Gerald Penn, and Carl Pollard.

I also thank the OSU Department of Linguistics and the Edward J. Ray Travel Award
committee for the financial support that allowed me to travel to these conferences; and the
OSU Graduate School and the National Science Foundation for providing the fellowships
that supported my studies in general.

For general friendship, camaraderie, and (occasional) commiseration, I thank Wes
Davidson, Hope Dawson, Anna Feldman, Vanessa Metcalf, Julia Papke, and Andrea Sims.

Finally, for providing me with an intensely rewarding set of experiences and diversions
from my studies, I thank the Council of Graduate Students and those I have had the pleasure
of working with on committees or elsewhere: Cathy Baack, Marilyn Blackwell, J. Briggs
Cormier, Deb Cunningham, Zita Divis, Susan Fisher, Kerry Hodak, Allyson Lowe, Ron
Meyers, Barb Pletz, Alan Randall, and W. Randy Smith.

v

Contents

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Figures ix

1 Introduction 1

2 Discontinuous Constituents in HPSG 3
2.1 Discontinuous Constituency . 3

2.1.1 The Descriptivist Approach . 3
2.1.2 The Transformational Response 4
2.1.3 Non-Derivational Approaches . 4

2.2 Linearization in HPSG . 6
2.2.1 Reape’s Domain Objects . 6
2.2.2 Partial Compaction . 10
2.2.3 Topological Fields . 12

2.2.3.1 Topological Field Hierarchies 14
2.2.4 The Construction-based Approach 15

2.3 Constituency and Locality . 17
2.4 Conclusion . 20

3 Existing Formalisms for Parsing With Discontinuous Constituents 21
3.1 Early Work . 21
3.2 Dependency Grammar . 22
3.3 DPSG . 25
3.4 Topological Parsing . 26

3.4.1 Topological Dependency Parsing 26
3.4.2 Penn’s Topological Parser . 30

3.5 Suhre’s Linear Specification Language . 31
3.6 Conclusion . 32

4 The GIDLP Formalism 33
4.1 Generalizing ID/LP Grammar . 33

4.1.1 Overview . 33
4.1.2 Lexical Entries . 34
4.1.3 Grammar Rules . 34
4.1.4 Start Declaration . 34
4.1.5 LP Constraints . 34
4.1.6 Domain Declarations . 35

4.2 Examples . 36
4.2.1 Mimicking a CFG . 36
4.2.2 Illustrating Domain Formation . 37

vi

4.3 Formal Model . 38
4.4 Conclusion . 39

5 Parsing GIDLP Grammars With Atomic Categories 41
5.1 Earley’s Algorithm . 41

5.1.1 Modifying Earley’s Algorithm . 43
5.2 The GIDLP Parsing Algorithm – Atomic Categories 43

5.2.1 Design Considerations . 43
5.2.1.1 Edge Coverage . 43
5.2.1.2 The Dot . 44
5.2.1.3 LP Constraint State Representation 46
5.2.1.4 Domains in Earley’s Algorithm 47
5.2.1.5 Edge Subsumption and Ambiguity Packing 48
5.2.1.6 Backpointer Classes . 49

5.2.2 The Algorithm Itself . 50
5.2.2.1 Grammar Compilation 50
5.2.2.2 Minimum Yield . 51
5.2.2.3 Maximum Yield . 52
5.2.2.4 Reachability . 53
5.2.2.5 Parser Agenda . 54
5.2.2.6 Prediction . 55
5.2.2.7 Mask Computation . 55
5.2.2.8 Completion . 56
5.2.2.9 Order Constraint Updating 56
5.2.2.10 Activating dormant constraints 57
5.2.2.11 Updating token-based constraints 57
5.2.2.12 Updating and merging description-based constraints . . . 57
5.2.2.13 Completion – Final Steps 58

5.3 Sample Parses . 58
5.3.1 Relatively-free Word Order . 58
5.3.2 Domains and Dormant Constraints 64

5.4 Conclusion . 68

6 Parsing GIDLP Grammars With Feature Structure Categories 69
6.1 Unification-Based Parsing . 69

6.1.1 Restriction . 70
6.1.1.1 Restriction To Ensure Termination 70
6.1.1.2 Restriction as Optimization 72
6.1.1.3 Dangers of Improper Restriction 73

6.1.2 Quick Check Vectors . 73
6.2 Non-Local Information Flow . 74
6.3 The GIDLP Parsing Algorithm for Feature Structure Categories 75

6.3.1 Grammar Compilation . 75
6.3.2 Prediction . 77
6.3.3 Completion . 77

6.3.3.1 Non-Modular LP Constraints 78
6.3.3.2 Constraint Stores . 79

6.4 Conclusion . 79

vii

7 Evaluation 80
7.1 Linguistic Expectations . 80

7.1.1 Discontinuous Constituency as Grammar Optimization 80
7.1.2 The Value of RHS Ordering . 81
7.1.3 Computational Complexity . 82

7.2 Implementation Notes . 82
7.2.1 Performance on Suhre’s Grammars 83

7.3 Efficiency . 83
7.3.1 Performance on Context-free Grammars 83
7.3.2 Larger-scale Grammar Evaluation 85

7.4 Conclusion . 88

8 Conclusion 89
8.1 Future Work . 89
8.2 Conclusion . 90

Bibliography 91

Citation Index 99

viii

List of Figures

2.1 English Particle Verbs . 5
2.2 Parentheticals as Inducing Discontinuous Constituency 5
2.3 Blevins’s Mobile Grammars . 7
2.4 Domain Insertion and Domain Union . 9
2.5 German Cross-Serial Dependency Tectogrammatic Structure 9
2.6 One Possible Phenogrammatic Structure . 9
2.7 German Cross-Serial Dependency Domain Tree 11
2.8 Relative Clause Extraposition Within NP . 11
2.9 Relative Clause Extraposition Within NP With Partial Compaction 13
2.10 Topological Fields . 13
2.11 Topological Fields for Serbo-Croatian Clitics 16
2.12 Argument Attraction . 19
2.13 Invisibility of Subject Properties . 19

3.1 Three modes of combination . 23
3.2 Modes of combination as used in parsing . 23
3.3 Phrase Structure and Dependency Grammar Trees 23
3.4 Non-Projective Dependency Tree . 24
3.5 Discontinuous Phrase Structure Grammar Tree 26
3.6 Dependency Tree . 27
3.7 Topological Dependency Parse: Step 1 . 29
3.8 Topological Dependency Parse: Step 2 . 29
3.9 Topological Dependency Parse: Step 3 . 29
3.10 Topological Dependency Parse: Step 4 . 30

4.1 Parse Tree Showing Tectogrammatic Structure 38
4.2 Parse Tree Showing Phenogrammatic Structure 38
4.3 Formal Presentation of a GIDLP Grammar . 40
4.4 Formal Derivation with respect to a GIDLP Grammar 40

5.1 Earley’s Algorithm . 42
5.2 Common Operations on Bitvectors . 45
5.3 GIDLP Parsing Algorithm . 51
5.4 Minimum Yield Example . 52
5.5 Grammar Graph . 53
5.6 Strongly Connected Component Graph . 53
5.7 Example Grammar for Reachability . 54
5.8 Category Reachability . 54
5.9 Domain Reachability . 55
5.10 Compiled Grammar . 55

ix

5.11 Mask Computation . 57
5.12 Mask Computation Example . 57
5.13 Immediate Precedence Frontier Updating . 59
5.14 Immediate Precedence Frontier Merging . 59

6.1 Example feature structure grammar . 70
6.2 Parse tree for string aaa . 70
6.3 Harrison and Ellison’s grammar . 74
6.4 Parse trees for strings a and b . 74
6.5 Seiffert’s grammar . 76
6.6 Two passive edges created during parse of edfg 76
6.7 Result of completing passive edges in Figure 6.6 via rule 1 76
6.8 GIDLP Parsing Algorithm . 77

7.1 Average Chart Size per Sentence Length . 87
7.2 Chart Size per Sentence Length for Individual Sentences 87

8.1 Storing Grammar in a Trie . 90

x

Chapter 1

Introduction

This thesis motivates and describes the Generalized Immediate Dominance/Linear Prece-
dence (GIDLP) formalism: a formalism capable of serving as a processing backbone
for linearization-based grammars in the Head Driven Phrase Structure Grammar (HPSG;
Pollard and Sag 1994) framework. Representing a prominent tradition within HPSG,
linearization-HPSG (Reape 1989, 1990, 1991b, 1993, 1994; Pollard et al. 1994; Kathol
1995; Richter and Sailer 1995; Reape 1996; Müller 1999a; Penn 1999; Donohue and Sag
1999; Bonami et al. 1999; Richter and Sailer 2001) centrally holds that the domain of word
order (that is, the region within which word order is determined) may be larger than the
local tree. As such, linearization-HPSG provides a way of modelling discontinuous con-
stituents in HPSG.

The notion that constituents may be discontinuous, or that string concatenation might
not be the only mode of constituent combination, has been a part of syntactic theory for
some time, typically with a goal of analyzing languages with relatively free word order. Its
use can be seen in frameworks such as Dependency Grammar (Bröker 1998; Plátek et al.
2001), Tree Adjoining grammar (Kroch and Joshi 1987; Rambow and Joshi 1994), Catego-
rial Grammar (Dowty 1982; Bach 1983; Dowty 1996; Hepple 1994; Morrill 1995), Head
Grammar (Pollard 1984), and those positing tangled trees (McCawley 1982; Huck 1985;
Ojeda 1987; Blevins 1990). Furthermore, two German treebanks (Skut et al. 1997; Hin-
richs et al. 2000) assume discontinuous constituents, and Müller (2004) argues that HPSG
grammars for German which license discontinuous constituents should also be preferred
on computational grounds. Put together, these strands of work justify the development of
efficient processing strategies for linearization-HPSG grammars.

In the HPSG architecture, all features and types are equal – no constraint is encoded as
being more important than any other. It is exactly this quality that gives linguists the free-
dom to propose pervasive changes to linguistic theory along the lines of linearization. But
on the computational side, many systems, like the Linguistic Knowledge Builder (LKB;
Copestake 1992) and the Attribute Logic Engine (ALE; Haji-Abdolhosseini and Penn
2003), depend on parsing algorithms that recognize a processing backbone – a part of the
grammar that has been set aside and given a distinguished role in the parsing process. These
systems contrast with those, like ConTroll (Götz and Meurers 1995, 1997a,b), that consider
the task to be performed one of constraint solving, applying general methods for logical
reasoning to the constraints present in an HPSG grammar.

While processing backbones lead to improved parsing efficiency, they also restrict the
class of grammars that the system can handle. For instance, both LKB and ALE use a back-
bone of phrase-structure rules, which encode immediate dominance and linear precedence

1

information in local trees. As phrase-structure rules cannot directly model discontinu-
ous constituency, any system using a phrase-structure backbone cannot directly encode a
linearization-HPSG grammar.

No grammar formalism is currently available that can provide a processing backbone
for linearization-based HPSG grammars, and as a result, linguists who feel that discontin-
uous constituency will make their grammars more explanatory or more elegant are placed
at a disadvantage by current technology. This thesis takes the remedy of this problem as its
goal, and as such must accomplish two tasks: the description of a formalism that can serve
as such a processing backbone, and the development of a parsing algorithm that uses this
formalism.

The structure of the thesis is as follows: chapter 2 presents the basic aspects of lin-
earization theory and illustrates how linearization has been used to analyze a wide variety
of phenomena. Chapter 3 discusses previous work on parsing discontinuous constituents in
a variety of frameworks and explains why a new formalism is necessary. Chapter 4 defines
and illustrates the GIDLP formalism, and chapters 5 and 6 give the GIDLP parsing algo-
rithm over atomic categories and feature-structure categories, respectively. Finally, chapter
7 characterizes the expressivity and efficiency of the formalism and parser through a variety
of evaluations.

2

Chapter 2

Discontinuous Constituents in HPSG

To understand the choices made in designing the GIDLP formalism, one must under-
stand the nature of discontinuous consitituency and the ways linguists state constraints
on word order in the linearization-HPSG tradition. This chapter begins in section 2.1 with
an introduction to the concept of discontinuous constituency. Section 2.2 then discusses
the attempts to accomodate discontinuous constituency within GPSG and HPSG, includ-
ing Reape’s initial formulation of linearization for HPSG and the various refinements to
Reape’s approach that have been offered in the literature. The chapter concludes in section
2.3 with a discussion of the interactions between the concepts of discontinuity and locality.

2.1 Discontinuous Constituency

2.1.1 The Descriptivist Approach

Phrase structure grammar is centered around the notion that sentences are composed of
subunits, or constituents, which themselves are either lexical items or can be further bro-
ken down into subsconstituents. The notion that some of these constituents could be dis-
continuous has been a part of the notion of constituency from the beginning. Bloomfield
(1933), for instance, states that “the common form of any (two or more) complex forms
is a . . . constituent of these complex forms” – making no requirement that a constituent be
continuous.

One of the earliest restrictions on discontinuous constituents comes from Wells (1947),
who states that discontinuous constituents should only be allowed in the event that the same
series of words, if they appeared as a continuous sequence in some other environment,
would make the same contribution to that environment. Under this principle, Wells gives
analyses involving discontinuous constituents for the sentences in (1)a – (4)a respectively
justified by the continuous counterparts in (1)b – (4)b.

(1) a. a better movie than I expected
b. this movie is better than I expected

(2) a. an easy book to read
b. this book is easy to read

(3) a. His father, according to John, is the richest man in Scarsdale.
b. His father is the richest man in Scarsdale.

(4) a. wake your friend up
b. wake up your friend

3

Under the assumption that each of the bold expressions in each pair makes the same contri-
bution to its sentence, those in the (a)-sentences are justified as discontinuous constituents.

2.1.2 The Transformational Response

With the advent of transformational grammar (Chomsky 1957), however, discontinuous
constituents – when they were discussed at all – were relegated to epiphenomena. Postal
(1964), for instance, states that discontinuous constituents are merely continuous con-
stituents that have been displaced by a permuting transformation. For instance, since turned
down is a constituent in the base form in Figure 2.1a, it need not remain a constituent in the
output in Figure 2.1b. Postal also objected to analyses positing discontinuous constituents
on the grounds that such analyses were merely producing trees without describing how
they could be generated – and that, in fact, the trees posited by such analyses were simply
incapable of ever being generated.

The main exception to this view is McCawley (1982), who points out that this latter
belief is an artifact of viewing trees as transcripts of a rewriting process, instead of as
objects in their own right. From a set-theoretic perspective, following Partee et al. (1990),
a tree is just a set of nodes linked so that one can start at any node and follow a single
path to the root of the tree. Formally, a tree is a partially-ordered set (where the order
is the inverse of the dominance relation) with a top in which every principal filter is a
finite chain. An ordered tree then adds a second relation precedence and two conditions:
(1) any two elements that are not dominance-comparable must be precedence-comparable;
and conversely (2) if A precedes B, anything dominated by A must also precede anything
dominated by B. Once trees are understood in this way, transformations can be seen as
operating directly on trees, changing the dominance and precedence relations (but always
subject to the constraint that the result remain a tree).

In McCawley’s view, condition (2) unnecessarily rejects discontinuous constituents.
Once it is abandoned, a transformation is free to modify the dominance relation without
affecting the precedence relation; he classifies such transformations as order-changing, in
constrast to relation-changing transformations, which only alter the precedence relation
when required to by a concomitant change in dominance. Using this framework, McCaw-
ley presents the discontinuous analysis of English parentheticals shown in Figure 2.2. In
essence, McCawley argues that the lack of evidence (in terms of traditional constituency
tests like do so ellipsis) that the parenthetical of course ever acts as part of the verb phrase
requires that it initially adjoin to the sentence as a whole before an order-changing trans-
formation puts it in the proper linear order.

Thus discontinuous constituents were excluded for the most part from transformational
grammar, despite having been a part of descriptivist approaches to syntax. These grounds
for exclusion, however, relied on the derivational nature of transformational grammar, leav-
ing subsequent non-derivational approaches free to adopt them.

2.1.3 Non-Derivational Approaches

Generalized Phrase Structure Grammar (GPSG) (Gazdar et al. 1985) was built upon the
Immediate Dominance/Linear Precedence (ID/LP) (Gazdar and Pullum 1981) framework,
which was originally developed as a way to abbreviate phrase structure grammars. ID/LP
grammars include two types of rules. ID rules establish local trees: for instance, the rule A
→ B, C, D states that an A may “immediately and exhaustively dominate a B, a C, and a
D” in some order. LP rules then specify the order in which categories are allowed to occur
within each local tree; in particular, a rule of the form A < B has the force “if A and B both
appear on the righthand side of a[n ID] rule, then A precedes B”.

4

S

VP

V

NP V PRT NP

He turned down the offer

S

V

NP V NP PRT

He turned the offer down

(a) (b)

Figure 2.1: English Particle Verbs

S

S

V’

NP V PP ADV

John talked about politics of course

S

S

V’

NP V ADV PP

John talked of course about politics
(a) Input (b) Output

Figure 2.2: Parentheticals as Inducing Discontinuous Constituency

Initially, these rules were not taken to define a grammar directly; instead, they were
seen as the input to a CFG-constructing procedure. Namely, for each ID rule, the set of
its RHS permutations was formed and each checked for LP acceptability; each acceptable
permutation became a rule in the resulting CFG. Since in the worst case, this transformation
leads to a factorial expansion in the number of rules, considerable descriptive efficiency
could be achieved through the ID/LP formalism.

It should be noted that the exclusion of discontinuous constituents in ID/LP grammar
arises from this expansion procedure, not from the semantics of the ID and LP rules them-
selves – there is no explicit statement that the LHS of an ID rule must dominate a contigu-
ous subset of the terminal yield, for instance. While it is true that LP constraints only apply
within a local tree, this does not rule out discontinuous constituency – it only prevents the
grammar writer from constraining the relative order of categories in different local trees.

This remains the case even in Shieber’s (1984) formalization of the notion of direct
ID/LP parsing (as opposed to the indirect mechanism described in the previous paragraphs);
the only difference is that the notion of LP-acceptable permutation is moved into the defi-
nition of a derivation. Specifically, the string αAβ derives αγβ whenever an ID rule A→ δ
exists and γ is an LP-acceptable permutation of δ. The fact that the α . . . β context remains
unchanged enforces contiguity among constituents.

The fact that ID/LP grammar excludes discontinuous constituency was not seen as a dis-
advantage at that time, as it was seen as important at the time that ID/LP remain strongly
equivalent to CFG (see, e.g. Pullum 1982). Yet while GPSG was being developed, re-
search was also being conducted on potential modifications to ID/LP that would allow
discontinuous constituents. In Blevins’s (1990) mobile grammar formalism, LP rules are
not restricted to apply within the local trees, but instead are taken to apply within each
maximal projection. Under this approach, the rules in (5) – (8) would license either tree in
figure 2.3.

(5) VP→ V, NP

5

(6) V→ V, PRT

(7) V < NP

(8) V < PRT

In evaluating the LP-acceptability of this tree, each maximal projection is examined, ig-
noring intermediate projections. Thus in both trees in figure 2.3, the VP node is seen to
dominate the NP and PRT nodes, as well as the lowest V node. The relative order of these
three constituents does not violate either LP constraint, and each tree is thereby licensed by
the grammar.

2.2 Linearization in HPSG

The idea of discontinuous consitituency has been present from the beginnings of HPSG;
it was even a part of Head Grammar (Pollard and Sag 1983; Pollard 1984), which served
as the immediate predecessor of HPSG. In particular, Pollard and Sag’s (1987) Scrambling
Principle, given in (9), officially signaled that discontinuity was acceptable in HPSG.

(9) phrasal-sign⇒
[
phon interleave-constituents(1)
dtrs 1

]

The function interleave-constituents is taken to be language specific, but is not oth-
erwise defined. This gives HPSG grammars the capability to be constructed for any lan-
guage regardless of their position on the scale from fixed word-order to completely-free
word-order.

2.2.1 Reape’s Domain Objects

The first presentation of linearization-HPSG appears in a series of papers by Reape (1989,
1990, 1991b, 1993, 1994, 1996), who challenges the tradition of giving configurational
accounts of word order for German sentences – in effect proposing that German be treated
as a relatively free word-order language rather than a relatively fixed one.

Reape’s system can be seen as a generalization of Blevins’s proposal to allow LP con-
straints to have domains larger than the local tree: while Blevins fixes the domain of LP
constraints in the framework, Reape allows the grammar itself to specify the domains
through a system of domain objects, represented by the dom feature on a sign. A domain
object is a list of signs, each of whose domain objects may or may not be empty, obeying
the constraint that the concatenation of the phon values of each sign is the phon value of the
sign itself. These domain objects are then interpreted as the domains within which linear
precedence constraints apply. A sample dom value is shown in (10); this will be abbreviated
as in (11) throughout the remainder of this thesis.

(10)
〈⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sign
phon a

dom
〈〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sign
phon bc

dom

〈⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign
phon b

dom
〈〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign
phon c

dom
〈〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign
phon d

dom
〈〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
〉

(11) 〈a, 〈b, c〉, d〉

The key operation involved in building domain objects is sequence union, notated by©
and defined in (12) (let ε be the empty list, �1, �2, �3 be lists, and ◦ be the list construction
operator). (Note that while sequence union is formally a relation among three lists, it is
presented here in functional notation for clarity.)

6

VP

V

V PRT NP

brought in the criminal

VP

V

V NP PRT

brought the criminal in
(a) (b)

Figure 2.3: Blevins’s Mobile Grammars

(12) ε © ε = ε
(x ◦ �1)© �2 = x ◦ �3 ← �1 © �2 = �3
�1 © (x ◦ �2) = x ◦ �3 ← �1 © �2 = �3

Informally, sequence union blends each of the input lists together into a single output list
in such a way as to preserve the order of each input list, as illustrated in (13).

(13)

A = 〈a, 〈b, c〉〉
B = 〈〈d, e〉, f 〉

A© B = 〈a, 〈b, c〉, 〈d, e〉, f 〉
= 〈a, 〈d, e〉, 〈b, c〉, f 〉
= 〈a, 〈d, e〉, f , 〈b, c〉〉
= 〈〈d, e〉, a, 〈b, c〉, f 〉
= 〈〈d, e〉, a, f , 〈b, c〉〉
= 〈〈d, e〉, f , a, 〈b, c〉〉

This relation is then used to form the domain object of the mother in each local tree.
Each daughter’s domain object is taken – either as a list of signs directly, or as a singleton
list containing the list of signs – and sequence unioned to form the mother’s order domain.
The former case is referred to as domain union, and the latter as domain insertion. This is
formalized in the Domain Principle, given in (14).

(14) functor-argument-structure⇒⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
dtrs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
fun-dtr 1

arg-dtrs
〈

2
[
unioned −

]
, . . . , i

[
unioned −

]〉
©
〈[
unioned +

dom i + 1

]
, . . . ,

[
unioned +

dom n

]〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dom
〈

1
〉
©
〈

2
〉
©· · ·©

〈
i
〉
© i + 1 ©· · ·© n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The feature unioned marks its corresponding domain object for domain union when pos-
itive, and for domain insertion when negative. The effect of the principle is therefore to
collect the domain objects of the daughters to be inserted, wrap each in a singleton list, and
sequence union the results together with the domain objects of the daughters to be unioned.
An element of a daughter domain object that gets unioned into its mother’s domain object
is often referred to as liberated (following Zwicky (1986)) or emancipated, although Reape
did not use those terms. A domain object that undergoes insertion has similarly come to be
called isolated or compacted.

7

In essence, domain insertion prevents the appearance of intervening material from other
constituents, while domain union allows this. To see the difference, consider a local tree
with mother S and two daughters: an NP with domain object 〈the, dog〉 and a VP with
domain object 〈ran, quickly〉. If the NP is domain-inserted and the VP is domain-unioned,
then the domain object for A must be a sequence union of 〈〈the, dog〉〉 and 〈ran, quickly〉.
The three possibilities (15) – (17) correspond to the trees shown in Figure 2.4.

(15) 〈〈the, dog〉 , ran, quickly〉
(16) 〈ran, 〈the, dog〉 , quickly〉
(17) 〈ran, quickly, 〈the, dog〉〉

Thus to give a linguistic analysis using domain objects, a linguist must specify when
daughters are domain unioned or domain inserted into their mother’s domain. In Reape’s
approach, functor daughters – for instance, the heads in head-complement structures – are
always domain-inserted, while argument daughters may be either inserted or unioned into
the mother’s domain.

It is important to notice that this approach does not force discontinuous constituency –
by always using domain insertion, all constituents will be continuous: if each constituent is
inserted into its mother’s order domain as an uninterruptable unit, there will be no oppor-
tunity for parts of one constituent to occur amidst another. Discontinuity only arises when
there is at least one application of domain union: material attached at a higher level of the
syntactic tree will not be prevented from intervening between the contents of the unioned
domain. In this light, domain union can be seen as a kind of bracket erasure, encoding the
fact that the constituent being domain unioned is not a word order domain in and of itself.

We can illustrate the basics of this approach with the sentences in (18), which feature
German cross-serial dependencies. In Reape’s analysis, all share the same phrase struc-
ture, shown in the “syntax tree” – Reape’s term for an unordered tree that only displays
dominance – given in Figure 2.5. In each case das Buch and zu lesen form one (discontin-
uous) constituent that combines with dem Mann and versprochen to form another, which
combines with die Frau and hat to form a sentence. As a result, each sentence in (18)
corresponds to a different way of tangling Figure 2.5; Figure 2.6 shows the tangling that
corresponds to (18a).

(18) a. daß
that

das
the

Buch1
book

dem
the

Mann2
man

die
the

Frau3
woman

zu
to

lesen1
read

versprochen2
promised

hat3
has

b. daß
that

das
the

Buch1
book

die
the

Frau3
woman

dem
the

Mann2
man

zu
to

lesen1
read

versprochen2
promised

hat3
has

c. daß
that

dem
the

Mann2
man

das
the

Buch1
book

die
the

Frau3
woman

zu
to

lesen1
read

versprochen2
promised

hat3
has

d. daß
that

dem
the

Mann2
man

die
the

Frau3
woman

das
the

Buch1
book

zu
to

lesen1
read

versprochen2
promised

hat3
has

e. daß
that

die
the

Frau3
woman

das
the

Buch1
book

dem
the

Mann2
man

zu
to

lesen1
read

versprochen2
promised

hat3
has

f. daß
that

die
the

Frau3
woman

dem
the

Mann2
man

das
the

Buch1
book

zu
to

lesen1
read

versprochen2
promised

hat3
has

‘. . . that the woman promised the man to read the book.’

Reape uses the constraints in (19) to account for the orders in (18).

(19) a.
[
dom
]⇒ [dom NP ≺ V

]

8

S

NP VP

the dog ran quickly

S

NP VP

ran the dog quickly

S

NP VP

ran quickly the dog
(a) (b) (c)

Figure 2.4: Domain Insertion and Domain Union

S

NP1

die Frau

VP1

NP2

dem Mann

VP2

NP3

das Buch

V3

zu lesen

V2

versprochen

V1

hat

Figure 2.5: German Cross-Serial Dependency Tectogrammatic Structure

S

VP1

VP2

NP3 NP2 NP1 V3 V2 V1

das Buch dem Mann die Frau zu lesen versprochen hat

Figure 2.6: One Possible Phenogrammatic Structure

b.
[
dtrs|headdtr 1 V

[
inv −

]]⇒ [dom V
 1
]

Constraint (19a) can be read “if a feature structure contains the attribute dom, the value of
that attribute must respect the constraint NP < V”; it indicates noun phrases precede verbs
within all domains. Constraint (19b) similarly requires non-inverted verbs to precede all
other verbs in the same domain.

One possible linearization of Figure 2.5 (corresponding to the tangling in Figure 2.6
that licenses (18a)) under these constraints is illustrated in the “domain tree” – Reape’s
term for an unordered tree whose nodes are domain objects and where one node immedi-
ately dominates another iff the former’s category immediately dominates the latter’s in the
corresponding syntax tree – shown in Figure 2.7. In each node, the outer bracket represents
the sign itself, while its contents show the contents of the sign’s domain object. The infini-
tival verb zu lesen has been inserted into its mother’s domain object (as have all the noun
phrases); as a result, no other material may occur between zu and lesen. The verb phrases
in this tree (namely, das Buch zu lesen and das Buch dem Mann zu lesen versprochen) are
unioned into their mothers’ domains, allowing material from a higher level to intervene;
as a result, the verb phrase constituents are absent from the higher domain objects. The

9

linear precedence constraints that Reape provides ensure that all of the nouns occur before
all of the verbs, and that each verb occurs after the verb it governs. The relative order of
the nouns, however, is not constrained, allowing for all six of the sentence possibilities
described earlier to be licensed.

2.2.2 Partial Compaction

Reape’s initial work on linearization allows a daughter’s domain object to contribute to
its mother’s domain object in two ways: domain insertion and domain union. Kathol and
Pollard (1995) criticize this dichotomy as being too coarse, disallowing the possibility that
a construction could have some arguments inserted into their mother’s domain and others
unioned in. From this observation developed a strand of work (Kathol and Pollard 1995;
Kathol 1995; Yatabe 1996; Lee 1999; Campbell-Kibler 2002; Maekawa 2004) that intro-
duced and developed the notion of partial compaction, in which only a portion of the signs
on the daughters’ domain objects are inserted as a unit into the mother’s domain object,
the remainder being domain unioned in. In effect, while Reape’s approach allows word
order domains that are larger than the local tree, via constituents that do not correspond
to domain objects, partial compaction allows word order domains that are smaller than the
local tree, via domain objects that do not correspond to constituents.

To illustrate the need for this, Kathol and Pollard take as their exemplar the phenom-
enon of extraposition in German, as shown in (20).

(20) einen
a

Hund
dog

füttern
feed

der
that

Hunger
hunger

hat
has

‘to feed a dog that is hungry’

The relative clause der Hunger hat has been extraposed from the noun phrase einen Hund
der Hunger hat, allowing the verb füttern to intervene. The structure assumed for the struc-
ture (following (Nerbonne 1994)) is shown in Figure 2.8. In essence, the relative clause
itself is marked

[
unioned −

]
, indicating that it should be inserted into its mother’s domain

as a single unit. The modified NP is then marked
[
unioned +

]
, indicating that it is unioned

into its mother’s domain, allowing füttern to intervene. Furthermore, their modification of
Nerbonne’s LP constraint1 in (21) requires the relative clause to appear last in its domain,
so füttern must precede the relative clause.

(21)
[]
<
[
extra +

]

The problem, as Kathol and Pollard point out, arises when one considers the related
phrase in (22).

(22) an
of

einen
a

Hund
dog

denken
think

der
that

Hunger
hunger

hat
has

‘to think of a dog that is hungry’

They observe that the preposition an must combine with the rest of the noun phrase at a
higher level than the relative clause (since the relative clause only modifies the NP within
the PP). At the same time, the sequence an einen Hund must correspond to a single domain
object, based on the general ordering properties of German prepositional phrases. This

1Nerbonne stated his version of the constraint as
[
extra −]< [extra +]; the version in (21) allows there to be more

than one
[
extra +

]
object in a domain.

10

S: 〈das Buch, dem Mann, die Frau, zu lesen, versprochen, hat〉

NP1: 〈die Frau〉 V1: 〈hat〉 VP1: 〈das Buch, dem Mann, zu lesen, versprochen〉

NP2: 〈dem Mann〉 V2: 〈versprochen〉 VP2: 〈das Buch, zu lesen〉

NP3: 〈das Buch〉 V3: 〈zu lesen〉
Figure 2.7: German Cross-Serial Dependency Domain Tree

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
VP

dom

〈 ⎡⎢⎢⎢⎢⎢⎣
〈
einen Hund

〉
NP

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
〈
füttern

〉
V

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
〈
der Hunger hat

〉
REL-S

⎤⎥⎥⎥⎥⎥⎦
〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NP
unioned +

dom

〈 ⎡⎢⎢⎢⎢⎢⎣
〈
einen Hund

〉
NP

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
〈
der Hunger hat

〉
REL-S

⎤⎥⎥⎥⎥⎥⎦
〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
NP

dom

〈[〈
einen

〉]
,
[〈

Hund
〉]〉
⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

REL-S
unioned −
extra +

dom

〈⎡⎢⎢⎢⎢⎢⎣
〈
der
〉

REL

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
〈
Hunger

〉
N

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
〈
hat
〉

V

⎤⎥⎥⎥⎥⎥⎦
〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
V

dom

〈[〈
füttern

〉]〉
⎤⎥⎥⎥⎥⎥⎥⎥⎦

Figure 2.8: Relative Clause Extraposition Within NP

indicates that the preposition should attach at a lower level than the relative clause, since
in Reape’s approach domain objects can only be formed from local trees. As a result, this
framework cannot analyze such a construction.

Their solution, referred to as partial compaction, is to propose a system in which it
is possible for some of the arguments to be inserted and the rest unioned into the mother
domain. Partial compaction is defined through the p-compaction relation, given in (23).

(23) p-compaction(1 , 2 , 3) ≡
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
sign
synsem 4

dom 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦∧

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
dom-obj
synsem 4

phon 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦∧
6 = 5 © 3 ∧
7 = joinphon(5)

Here, the joinphon operation simply takes a list of domain object entries and concatenates
each phon value. Seen procedurally, the effect of p-compaction is to remove some items

11

(3) from the sign’s (1) domain object (6) and create a new domain object (2) from the
items remaining on the sign’s domain list (5) – in other words, all of 1 except for 3 will
be compacted into 2 . Defined this way, it is clear that partial compaction generalizes the
distinction between domain union and domain insertion: setting 3 to empty gives the effect
of domain insertion and setting 3 = 1 gives the effect of domain union.

Thus in (22), the desired effect is obtained by choosing to union (rather than insert) the
relative clause when the noun phrase combines with the verb. This is expressed through
the schema in (24).

(24)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
dom 5

hd-dtr
[
dom 4

]
comp-dtrs 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦∧
p-compaction(1 , 2 , 3) ∧
5 = 〈 2 〉 © 3 © 4 ∧
3 list(

[
synsem

[
extra +

]]
) ∧

(3 elist ∨ 2

⎡⎢⎢⎢⎢⎣synsem ¬
[
head verb
subcat elist

]⎤⎥⎥⎥⎥⎦)

The effect of the third attached clause is to exclude any extraposed elements from domain
insertion, while the fourth clause forces the list of excluded elements to be empty when the
complement is itself a clause.

This is illustrated in Figure 2.9. As before, the relative clause is domain-inserted into
the N, which is domain-unioned into the NP and PP domains. At the level where the PP
combines with the verb, the schema in (24) applies. The argument domains for an, einen,
and Hund are compacted, with the result being unioned with the domains for denken and
der Hunger hat.

2.2.3 Topological Fields

The LP constraints seen so far make primary reference to syntactic categories: nouns pre-
cede verbs, or verbs follow their arguments. A quite different set of ordering constraints is
found in the order domain-based theory developed by Kathol (1995, 2000) to account for
the basic clause structure of German. In particular, Kathol takes as his basis the topolog-
ical field approach prevalent in traditional analyses of German grammar (see, e.g. Drach
1937; Höhle 1986). In this approach, any German sentence can be divided from left to
right into fields whose contents will be homogeneous across sentences, despite variation in
word order. Linguists differ as to the number and nature of the fields; Kathol illustrates his
approach with a simplified system of five fields – the forefield (vf), left bracket (lb), middle
field (mf), right bracket (rb), and postfield (nf). These fields analyze the three major clause
types in German as illustrated in Figure 2.10 (taken from Kathol 2000).

In a declarative main clause like (A), the subject occupies the forefield, the finite verb
is the left bracket, and complements and modifiers typically appear in the middle field.
Sentence (B) is similar, except that here the the forefield holds the direct object of the
sentence. In general, the forefield may hold no more than one of the verb’s arguments or
modifiers; the question of which one is generally taken to be contextually determined. The
right bracket holds the verbs (recursively) governed by the finite verb, if any. Each of these
sentences illustrates the verb-second pattern.

In a subordinate clause like (C), the fields are occupied in a slightly different fashion.
Here, the left bracket contains the complementizer daß, and both the finite verb and the
verbs it (recursively) governs occur in the right bracket; the postfield contains extraposed
elements. This sentence illustrates the verb-final pattern.

12

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

VP

dom

〈 ⎡⎢⎢⎢⎢⎢⎣
〈
an einen Hund

〉
PP

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
〈
denken

〉
V

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
der Hunger hat

〉
REL-S
extra +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PP

dom

〈 ⎡⎢⎢⎢⎢⎢⎣
〈
an
〉

P

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
〈
einen

〉
DET

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
〈
Hund

〉
N

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
der Hunger hat

〉
REL-S
extra +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
P

dom

〈[〈
an
〉]〉
⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NP

dom

〈 ⎡⎢⎢⎢⎢⎢⎣
〈
einen

〉
DET

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
〈
Hund

〉
N

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
der Hunger hat

〉
REL-S
extra +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
DET

dom

〈[〈
einen

〉]〉
⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NBAR

dom

〈 ⎡⎢⎢⎢⎢⎢⎣
〈
Hund

〉
N

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
der Hunger hat

〉
REL-S
extra +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
N

dom

〈[〈
Hund

〉]〉
⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

REL-S
extra +

dom

〈⎡⎢⎢⎢⎢⎢⎣
〈
der
〉

REL

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
〈
Hunger

〉
N

⎤⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎣
〈
hat
〉

V

⎤⎥⎥⎥⎥⎥⎦
〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
V

dom

〈[〈
denken

〉]〉
⎤⎥⎥⎥⎥⎥⎥⎥⎦

Figure 2.9: Relative Clause Extraposition Within NP With Partial Compaction

vf lb mf rb nf
A) Lisa gießt die Blume

Lisa waters the flower
B) die Blume muß Lisa gießen

the flower must Lisa water
C) daß Lisa die Blume gießen würde morgen abend

that Lisa the flower water would tomorrow night
D) würde jemand die Blume gießen morgen abend?

would someone the flower water tomorrow night?

Figure 2.10: Topological Fields

13

Finally, (D) is an example of the verb-initial pattern typical of main clause polar in-
terrogative, imperative, and exclamatory sentences, as well as antecedents of conditionals.
These are characterized by an empty forefield and a left bracket containing the finite verb.

The key to this approach is that knowing which words can appear in which fields is
enough to largely determine the word order of the sentence. Thus using Reape’s domain
objects, Kathol need only state a single linear precedence constraint: vf ≺ lb ≺ mf ≺
rb ≺ pf. The root domain objects for the three sentence patterns described above therefore
appear as follows:

(25)
〈[

vf
phon ‘die Blume’

]
,
[
lb
phon ‘gießt’

]
,
[
mf
phon ‘Lisa’

]〉

(26)
〈[

lb
phon ‘daß’

]
,
[
mf
phon ‘Lisa’

]
,
[
mf
phon ‘die Blume’

]
,
[
rb
phon ‘gießt’

]〉

(27)
〈[

lb
phon ‘gießt’

]
,
[
mf
phon ‘Lisa’

]
,
[
mf
phon ‘die Blume’

]〉

As before, the noun phrase constituents have been inserted into the verb phrase’s domain
object rather than unioned, representing the fact that (in the general case) no material from
another constituent may intervene between a determiner and its noun. The domain shown in
(26) is one of two possible orders: barring any other constraints on middle-field constituents
and in the presence of the right pragmatic conditions, the alternate order [daß, die Blume,
Lisa, gießt] would also be licensed.

2.2.3.1 Topological Field Hierarchies

Penn (1999) presents an analysis of Serbo-Croatian clitic placement that illustrates a more
complicated use of topological fields centering around the notion of Wackernagel’s posi-
tion. Broadly defined, phenomena involving Wackernagel’s position require a clitic or pro-
noun to appear after either the first constituent (termed 2D placement, following (Halpern
1995)) or the first word in a clause (termed 2W placement. Penn discusses a certain class
of clitics in Serbo-Croatian that have this property; one of them is the je that appears in the
following examples:

(28) Taj
that

čovek
man

je
3sg

video
saw

Mariju
Mary

‘That man saw Mary.’

(29) Taj
that

je
3sg

čovek
man

video
saw

Mariju
Mary

‘That man saw Mary.’

(30) U
in

lepi
beautiful

grad
city

je
3sg

stigao
arrived

‘He has arrived in the beautiful city.’

(31) U
in

lepi
beautiful

je
3sg

grad
city

stigao
arrived

‘He has arrived in the beautiful city.’

Comparing (28) and (29), we see that the clitic je can have both 2D and 2W placement,
interrupting the constituent taj čovek in the latter case. Examples (30) and (31) show how
this interacts with the presence of the proclitic u, which does not “count” as a word when
determining second-word position. Phenomena like this were one of the motivations be-
hind the advocacy of head wrapping (see, e.g., Pollard 1984; Dowty 1997) as a mode of
combination in which a functor and argument combine by placing the argument adjacent
to the head of the functor.

As with Kathol, Penn’s analysis involves a topological field model; his fields, however,
are arranged into a hierarchy. For example, the topological fields used to analyze (30) are
given in Figure 2.11. The pre-cf and post-cf fields divide up the constituent interrupted

14

by the clitic: prosodic constraints determine what can fit in pre-cf and the rest of that
constituent is assigned to post-cf. The full cf (clitic field) contains subfields for each clitic
that can occur in the clitic field; this allows Penn to account for the fact that, in sentences
where more than one Wackernagel clitic is present, the clitics always appear in a fixed
relative order. Finally, the remainder field rf contains all other top-level domain objects
(which are relatively unconstrained in terms of word order).

2.2.4 The Construction-based Approach

The examples of linearization HPSG presented so far all focus on phenomena that can be
analyzed with global LP constraints – constraints that are taken to apply universally within
a given grammar (Gazdar and Pullum 1981). Linguists have also worked with languages
that appear to demand construction-specific word order constraints. One example of an
analysis for such a language is Donohue and Sag’s (1999) analysis of Warlpiri, an Aus-
tralian language. Donohue and Sag make the following generalizations about Warlpiri:

1. An auxiliary element (AUX) must appear in every Warlpiri sentence containing a
verb. It generally occupies second position, but it may be sentence-initial in con-
nected speech (as opposed to isolated utterances).

2. Auxiliaries with a monosyllabic base encliticize to the preceding word.
3. NPs (which consist of a noun and any number of modifiers) may be realized in two

ways:
• a construction in which case marking appears only on the right-most element.

This construction can appear in the pre-AUX position; it cannot be interrupted
by material from other constituents.

• a construction in which case marking appears on each element. This construc-
tion cannot appear in the pre-AUX position (although any of its elements alone
can) and can be realized discontinuously.

The generalizations regarding noun phrases are illustrated2 in (32) – (34).

(32) kurdu-jarra-rlu
child.dual.erg

ka-pala
pres.3duSub

maliki
dog.abs

wajili-pi-nyi
chase.npast

wita-jarra-rlu.
small.dual.erg

‘Two small children are chasing the dog.’

(33) kurdu
child

wita-jarra-rlu
small.dual.erg

ka-pala
pres.3duSub

maliki
dog.abs

wajili-pi-nyi.
chase.npast

‘The two small children are chasing the dog.’

(34) * kurdu
child

ka-jana
pres.3plObj

yalumpu-rlu
that.dual.erg

maliki-patu
dog.pl

jiti-rni.
tease.npast

‘Those two children are teasing the dogs.’

In (32), the noun phrase kurdu-jarra-rlu wita-jarra-rlu appears discontinuously; each ele-
ment bears case marking, and it is acceptable for the first element to occupy initial position.
In contrast, the noun phrase kurdu wita-jarra-rlu in (33) exhibits case marking only on the
second element, and the entire noun phrase occupies initial position; sentence (34) demon-
strates that such a noun phrase cannot appear discontinuously.

2All examples in this section are quoted from (Donohue and Sag 1999); in the glosses, periods separate the
grammatical information carried by each morpheme.

15

matrix

pre-cf

[u lepi]

cf

je-cf

[je]

post-cf

[grad]

rf

[stigao]

Figure 2.11: Topological Fields for Serbo-Croatian Clitics

Integrating Reape’s notion of a dom object into the constructional variant of HPSG
advocated in (Sag 1999), Donohue and Sag create constructional analogues of domain
union (35) and domain insertion (36).

(35) liberating-cx⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hd-cx

mother
[
dom δ0 © · · · © δn

]
hd-dtr

[
dom δ0

]
non-hd-dtrs

〈[
dom δ1

]
, . . . ,

[
dom δn

]〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36) compacting-cx⇒
⎡⎢⎢⎢⎢⎢⎢⎣mother

⎡⎢⎢⎢⎢⎢⎣synsem 1

dom
〈[
synsem 1

]〉
⎤⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎦

A liberating construction is one in which the mother’s domain object is formed by shuffling
the domain objects of its daughters, which may therefore freely intermingle with each
other; that is, a construction which liberates all of its daughters. A compacting construction,
however, must correspond to a single domain object, the details of which are left to subtypes
of compacting-cx to determine.

One such subtype of compacting-cx is given in (37).

(37) compac-mod-nom-cx⇒
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
mother

[
dom

〈[
dom
〈

1 , 2
〉]〉]

non-hd-dtrs
〈

1
[
case none

]〉
hd-dtr 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This construction consists of a caseless modifier immediately preceding a noun. As a
subtype of compacting-cx, the construction’s mother category must contain a single domain
object on its dom list; this construction specifies that that element must consist solely of the
single non-head daughter followed by the head daughter. As a result, no other material may
intervene between the two daughters.

The corresponding construction in (32) is analyzed as a subtype of liberating-cx, given
in (38).

(38) liber-mod-nom-cx⇒
⎡⎢⎢⎢⎢⎢⎢⎣non-hd-dtrs

〈[
case 1

]〉
hd-dtr

[
case 1

]
⎤⎥⎥⎥⎥⎥⎥⎦

As the relationship between the mother’s dom list and the daughters’ dom lists is already
specified by the constraints on liberating-cx, this construction need only impose a require-
ment for case identity.

Turning to the requirement that no more than one element precede the auxiliary, Dono-
hue and Sag posit a second subtype of compacting-cx as well as two linear precedence
rules; these are given in (39) – (41).

16

(39) ip-cl⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mother

[
dom
〈[
dom order(0 , . . . , n)

]〉]

non-hd-dtrs
〈

1
[
ss s1

]
, . . . , n

[
ss sn

]〉

hd-dtr 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
word
head aux

comps
〈

s1 , . . . , sn
〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(40) aux ≺ [foc −]
(41)

[
foc +

]≺ []

Donohue and Sag do not discuss the order relation; it presumably yields a permutation
of its arguments that does not violate any LP constraints. Constraint (40) requires that the
auxiliary precede all unfocused elements, and (41) requires that a focused element precede
all others.

Put together, these constraints account for the data given. In (32), each word of the
noun phrase kurdu-jarra-rlu wita-jarra-rlu bears case marking, and so the phrase itself is
licensed as a liber-mod-nom-cx. The two words are shuffled together with the rest of the
arguments of the auxiliary, and kurdu-jarra-rlu may appear before the auxiliary as long as
it is focused. In contrast, the noun phrase kurdu wita-jarra-rlu exhibits case marking only
on the second element, and can only be licensed by compac-mod-nom-cx, forming a single
domain object. If this domain object is focused, as in in (33), the entire noun phrase may
occupy initial position. Finally, as no construction will license a domain object containing
only a single caseless modifier, sentence (34) is ungrammatical.

2.3 Constituency and Locality

Once constituency has been rejected as the sole determinant of word order, a question
arises as to its linguistic significance. Indeed, frameworks like categorial grammar and
dependency grammar either relegate to an epiphenomenon or entirely reject the notion of
constituency as linguistically meaningful. Yet independent motivation for the notion of
constituency can be found in the principle of locality: the concept that the syntactic prop-
erties at one level of structure are determined solely by the grammatical properties of local
levels of structure. This general principle can take many forms: for instance, locality can
be described as requiring a mother’s syntactic properties to be determined by the its daugh-
ters’ properties and not its daughters’ daughters’ properties; or that a category’s properties
are determined by its dependents’ properties and not its dependents’ dependents’ proper-
ties. However it is phrased, locality is meaningless in the absence of a metric for ‘distance’
that can differentiate ‘local’ from ‘non-local’, and constituency is one way of providing
this metric.

In a critique of Reape’s assumptions regarding German clause structure (as presented
in section 2.2.1), Kathol (2000) observes that Reape’s structure is incompatible with this
constituency-based notion of locality. He then shows that an approach referred to as ar-
gument attraction, introduced into HPSG by Hinrichs and Nakazawa (1990)3, success-
fully integrates this notion of locality with discontinuous constituency. Under an argument
attraction analysis, the constituent structure assigned to (18a), repeated here as (42), is
markedly different: the verbs first combine to form a verbal cluster that subcategorizes
for a combination of each component’s subcategorization requirements. The nature of this
combination depends on the relationship between the verbs; in this example it is set union.

3As Pollard et al. (1994) point out, this approach is not original with HPSG; it echoes the notions of function
composition in combinatory categorial grammar, clause union and ascension from relational grammar, and earlier
work in GPSG by Nerbonne (1986).

17

(42) daß
that

das
the

Buch1
book

dem
the

Mann2
man

die
the

Frau3
woman

zu
to

lesen1
read

versprochen2
promised

hat3
has

‘. . . that the woman promised the man to read the book.’

This is illustrated in Figure 2.12. Here, zu lesen is an ordinary content verb subcatego-
rizing for a subject and an object. As a subject control verb, versprochen subcategorizes for
a subject, a dative object, and a verbal complement whose subject is coindexed with ver-
sprochen’s subject; here, the verbal complement is selected via the vcomp feature (Chung
1993; Rentier 1994; Müller 1997). Thus the verbal complex zu lesen versprochen subcate-
gorizes for three NP arguments. At the next level, hat, as a raising verb, simply promotes
its verbal argument’s subcategorization requirements to be its own without adding any ex-
tra arguments, and thus the highest V node is expecting three arguments, which it will then
combine with. There is no consensus on whether the arguments combine all at once, or one
at a time; Müller (2004) discusses the arguments for and against each analysis.

Now constructions exist in German in which matrix verbs require access to various
properties of, respectively, the subject, the direct object, and the indirect object of embed-
ded clauses. By treating the verbal complex (in the last example, zu lesen versprochen hat)
as a consituent (which Reape’s analysis does not do), it is possible to construct accurate
analyses of these phenomena which preserve locality.

First consider German raising verbs, which agree with their subject when one is present
and take third-person singular inflection otherwise. This is shown in (43) – (45).

(43) Heute
today

scheint
seems.3sg

gearbeitet
worked

zu
to

werden.
be

‘There seems to be work going on today.’

(44) Den
the

Mädchen
girls.dat

scheint/*scheinen
seem.3sg/seem.3pl

schlecht
ill

zu
to

werden
become

‘The girls seem to be getting ill to the stomach.’

(45) Du
You

scheinst/*scheint
seem.2sg/seem.3sg

nichts
nothing

zu
to

verstehen.
understand

‘You don’t seem to understand anything.’

All three sentences have the raising verb scheinen as their main verb. Sentences (43) and
(44) are subjectless constructions, in which the 3sg form scheint is required. The embedded
verb in (45), in contrast, has a subject, and so the verb must agree with this 2sg subject.

However in Reape’s approach, where a raising verb combines with a full sentence,
the information on the presence and nature of the embedded subject is no longer locally
available: the embedded verb has combined with its arguments and now has empty valence
features. This is illustrated in Figure 2.13, where the object representing nichts zu verstehen
is a sentence: it has an empty subcat list. Thus the raising verb scheinen cannot locally
select for any properties of the embedded subject.

As a result, Reape would have to assume an alternative account of the selectional data.
With argument attraction, however, raising verbs combine with their embedded verbs be-
fore the subject is realized, and they may therefore straightforwardly make use of the em-
bedded verb’s valence features.

This is not the only alternative, of course; one could assume that subj is a head feature
(see, e.g. Kiss 1995; Meurers 1999). But the same arguments apply in the case of matrix
access to embedded direct and indirect objects, in which case percolation of subj will not
provide the necessary information. Again, one could argue that arg-st should also be

18

S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
subj

〈〉
comps

〈〉
vcomp

〈〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 NP

die Frau

VP

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
subj 5

〈
1 NPi

〉
comps

〈〉
vcomp

〈〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 NP

dem Mann

VP

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
subj 5

〈
1 NPi

〉
comps

〈
2
〉

vcomp
〈〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3 NP

das Buch

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
subj 5

〈
1 NPi

〉
comps 6

〈
2 , 3
〉

vcomp
〈〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
subj 5

〈
1 NPi

〉
comps 6

〈
2 , 3
〉

vcomp
〈〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
subj NPi

comps 7
〈

3
〉

vcomp
〈〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

zu lesen

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

subj 5
〈

1 NPi
〉

comps 6 (
〈

2 NP
〉
⊕ 7)

vcomp

〈
V
[
subj NPi

comps 7

]〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

versprochen

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

subj 5

comps 6

vcomp

〈
V
[
subj 5

comps 6

]〉
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

hat

Figure 2.12: Argument Attraction

S

⎡⎢⎢⎢⎢⎢⎢⎣subj
〈〉

comps
〈〉
⎤⎥⎥⎥⎥⎥⎥⎦

S

⎡⎢⎢⎢⎢⎢⎢⎣subj
〈〉

comps
〈〉
⎤⎥⎥⎥⎥⎥⎥⎦

du VP

⎡⎢⎢⎢⎢⎢⎢⎣subj
〈
NP
〉

comps
〈〉
⎤⎥⎥⎥⎥⎥⎥⎦

nichts V

⎡⎢⎢⎢⎢⎢⎢⎣subj
〈
NP
〉

comps
〈
NP
〉
⎤⎥⎥⎥⎥⎥⎥⎦

zu verstehen

V

⎡⎢⎢⎢⎢⎢⎢⎣subj
〈〉

comps
〈
S
〉
⎤⎥⎥⎥⎥⎥⎥⎦

scheinst

Figure 2.13: Invisibility of Subject Properties

19

percolated as a head feature (following, e.g. Przepiórkowski 2001), but this goes against
virtually any notion of locality.

Kathol illustrates the need for matrix access to properties of embedded direct and in-
direct objects with the sentences in (46) – (48). Sentence (46) illustrates the phenomenon
known as ‘distant’ or ‘long’ passive (Höhle 1978), in which the noun phrase der Wagen
is case-marked as the grammatical subject of the passive predicate wurde versucht while
thematically serving as the patient of the embedded predicate zu reparieren. Sentence (47)
is an instance of the ‘recipient’ or ‘dative’ passive, in which the indirect object Junge is
case-marked as the subject of bekommt while thematically serving as the recipient of the
embedded predicate schenkt (in contrast to (48), where Junge is case-marked as an indirect
object).

(46) Der
the

Wagen
car.nom

wurde
was

zu
to

reparieren
repair

versucht.
tried

‘Someone tried to repair the car.’

(47) Der
the

Junge
boy.nom

bekommt
receives

(von
by

mir)
me

ein
a

Buch
book.acc

geschenkt.
presented

‘The boy is presented with a book (by me).’

(48) Ich
I

schenke
present

dem
the

Jungen
boy.dat

ein
a

Buch.
book.acc

‘I present the boy with a book.’

As with the subject data above, these phenomena cannot be accounted for if verbs like
versuchen and bekommen combine with verb-phrases, as they do under Reape’s approach:
the direct object of reparieren and the indirect object of schenken would not be visible at
the VP level and thus unable to be affected by the passivization of versuchen or schenken.
Under the argument attraction approach, in constrast, der Wagen becomes a direct object
of the verbal complex reparieren versuchen, which is then passivized as a unit, assigning
passive morphology to versucht and realizing der Wagen as a grammatical subject rather
than as an object. Kathol concludes that Reape’s structural assumptions are unable to
provide local analyses for these kinds of phenomena as well, while argument attraction
can.

2.4 Conclusion

From the material presented in this chapter, it is clear that many linguists have found dis-
continuous constituency a necessary component of the analysis of language, and it is there-
fore worthwhile to have a parsing mechanism designed for linearization-HPSG grammars.
Any such parsing mechanism should be designed to enable the linguist to develop gram-
mars that model the underlying linguistic theory as closely as possible, while still allow-
ing efficient processing. The next chapter will survey existing parsing mechanisms in the
literature capable of handling discontinuous constituents, evaluating them with regard to
these desiderata – in particular, the capability to independently specify ID rules and LP
constraints and to explicitly specify the domains of LP constraints for both fixed and free
word-order languages.

20

Chapter 3

Existing Formalisms for Parsing With
Discontinuous Constituents

Any formalism intended to serve as a backbone for linearization-HPSG grammar process-
ing needs to have at least two characteristics: (1) the capability to independently specify
ID rules and LP constraints and (2) the ability to explicitly specify the domains of LP con-
straints smaller or larger than the local tree. A secondary consideration is that a parsing
algorithm is available that uses these LP constraints and word order domains as early as
possible in the parsing process, so as to avoid an inefficient “generate and test” pattern.

This chapter surveys the literature on formalisms for parsing with discontinuous con-
situents with regard to these considerations, ultimately concluding that no existing for-
malism satisfies these criteria. This chapter thereby establishes the need for the GIDLP
formalism and parsing algorithm that will be presented in the remaining chapters.

3.1 Early Work

Johnson (1985), working with definite clause grammars (DCGs), provided some of the ini-
tial work on parsing discontinuous constituents. Where DCGs by default use concatenation
to build phrases from their constituents, Johnson replaces this with a combines predicate
that succeeds if two conditions are met: (1) the first argument (representing the left-hand
category’s coverage) is equal to the union of all other arguments (representing the right-
hand category coverages); and (2) none of the right-hand category coverages overlap. For
instance, Johnson gives the rule in (49) as part of his grammar for Guugu Yimidhirr.1 This
rule states that an S may consist of a V and two NPs, as long as their coverages respect the
combines predicate.

(49) S(�)← V(�1) & NP(�2, Erg, 0) & NP(�3, Abs, 0) & combines(�, �1, �2, �3)

A similar approach is taken by van Noord (1991), who presents a modified version of
a left-corner parser (anticipating his later head-corner parser). As with Johnson’s parser,
discontinuity is a function of the combinatory predicate attached to each rule. For example,
the four combinatory schemes used in van Noord’s grammar of Dutch are given in Figure
3.1; these schemes interact as shown in Figure 3.2 while parsing the sentence given in (50).
In the latter diagram, each node is represented as the mode of combination that created
the node (if any), following by the string represented by the node. The head of each node
appears in small caps.

1The second and third arguments in the NP descriptions represent morphological information.

21

(50) Ziet
sees

Jan
Jan

Piet
Piet

Marie
Marie

kussen?
kiss

‘Does Jan see Piet kiss Mary?’

Here, the modes left and right are leftward and rightward concatenation, respec-
tively. The vr mode wraps the argument around the functor’s head: here, the argument’s
left context marie is placed between the functor’s left context piet and head ziet, and the
argument’s head and right context kussen are placed between the functor’s head ziet and
right context (here, empty). Finally, in the v2 mode, the functor is empty; the mother is
formed by inverting the argument’s head ziet and left context jan piet marie.

Reape (1991a) generalizes these methods, presenting versions of several algorithms
that have been adapted to allow for discontinuous constituents: top-down, left-corner, head-
corner, shift-reduce, and CYK. The input format remains (roughly) the same for each: im-
mediate dominance rules and a lexicon predicate whose clauses map words to categories.

All three of these approaches support free word order (in van Noord’s approach, one
would simply write a non-deterministic cb predicate). Yet there are no facilities for con-
straining word order outside the local tree. In addition, the combinatory predicates attached
to the rules are not used to guide parsing – they only act as post-hoc filters. None therefore
allow for direct modelling of linearization-HPSG grammars.

3.2 Dependency Grammar

The term dependency grammar refers to a wide array of research, generally considered
to have been brought into the modern era by Tesnière (1959). Through all these strands
runs a common theme: the concept of ‘phrase’ is deemed unnecessary; instead, linguistic
structure is said to arise through the dependencies words have on another.

Per Robinson’s (1970) formalization, dependency is an acyclic order on the lexical
items in a sentence in which (1) there is only a single maximal element; and (2) all other
elements depend on exactly one element. A dependency grammar is then specified as a
set of dependency rules, each of the form ‘category X may have category Y as a depen-
dent’; a sample grammar is given in (51). (Some versions of dependency grammar also
include valence requirements with the inverse force: ‘category X must have category Y as
a dependent’.)

(51) a) V← N
b) N← ADJ
c) N← DET

The difference between dependency grammar and phrase structure grammar is illus-
trated by the two trees in Figure 3.3. The tree on the left is the familiar phrase structure
analysis, while the tree on the right gives the dependency analysis (here, solid lines rep-
resent dependency, while the dotted lines show the projection of each lexical item). The
major contrast is that words (like big and dog) combine to form phrases (like big dog) in
the phrase structure tree, while in the dependency grammar tree, words depend on each
other (as big depends on dog).

A significant debate in the dependency grammar community centers around an addi-
tional axiom known as projectivity. This axiom effectively states that dependency lines
may not cross projection lines in a dependency graph. As such, analyses like that in Figure
3.4 (Covington 1990) would be rejected.

When projectivity is adopted, dependency analyses can be stated with trees rather than
graphs, and dependency grammars become weakly equivalent to context-free grammars (as

22

% cb(Identifier, FunctorDaughter, ArgDaughter, Mother)
% Categories are represented by p(Left, Head, Right)
% X-Y is interpreted as "from position X to position Y"
cb(left, p(L4-L, H, R), p(L1-L2, L2-L3, L3-L4), p(L1-L, H, R)).
cb(right, p(L, H, R1-R2), p(R2-R3, R3-R4, R4-R), p(L, H, R1-R)).
cb(vr, p(L1-L2, H, R3-R), p(L2-L, R1-R2, R2-R3), p(L1-L, H, R1-R)).
cb(v2, p(A-A, B-B, C-C), p(R1-R2, H, R2-R), p(A-A, H, R1-R)).

Figure 3.1: Three modes of combination

v2: ziet jan piet marie kussen

ε left: jan piet marie ziet kussen

vr: piet marie ziet kussen

left: piet ziet

ziet piet

left: marie kussen

kussen marie

jan

Figure 3.2: Modes of combination as used in parsing

S

VP

NP NP

N N

Det Adj N V Det Adj N

the big dog sees a little cat

V

N N

Det Adj Det Adj

the big dog sees a little cat

(a) (b)

Figure 3.3: Phrase Structure and Dependency Grammar Trees

23

V

Adv N

Adj N

Adj

ultima Cumaei venit iam carminis aetas

last.NOM Cumean.GEN has-come now song.GEN epoch.NOM

Figure 3.4: Non-Projective Dependency Tree

shown by Hays (1964)); as a result, the literature on parsing with context-free grammars is
directly applicable to parsing projective dependency grammars.

But projectivity did not feature in Tesnière’s (1959) original formulation of dependency
grammar, and as a result, a body of work has arisen around non-projective dependency
parsing. One of the earliest such parsers is described by Covington (1990, 1992), who
accepts grammars similar to that shown in (51), with two modifications: categories are
feature-structures, and each dependency rule is characterized as head-final or head-initial.

Covington informally presents his algorithm as follows: for each word, check for
previously-seen words on which the current word could depend. If none are found, mark
the word as a potential head; if one is found, record the dependency; and if multiple ones
are found, record the dependency with the closest word, keeping track of the alternatives.
Then search the list of potential heads for words that could depend on the current word. For
each one found, establish the dependency and remove it from the list of potential heads. At
the end of the parse, this list will only contain the head of the sentence.

Covington notes that because of the parser’s preference to establish dependencies with
the closest words, the parser prefers continuous constituents where possible, adding what
he sees as a degree of psychological realism to the algorithm. He also describes a number
of potential avenues for enhancement of this parser; for example, one could limit the depth
to which the lists of previous words and potential heads were searched, implementing a
maximum distance between head and dependent.

As a backbone for linearization-HPSG, however, the parser falls short – as Covington
(1994) points out, an order constraint between two dependents of a given head (for example,
that English indirect objects precede direct objects) cannot be directly stated and must be
encoded on an ad hoc basis in the verb’s lexical entry: by stating the verb’s dependents as
a list rather than as a set, the verb can be made to combine with one dependent before the
other.

In a similar vein, Koch (1993) observes that Covington’s formalism treats all dependen-
cies as optional and thus has no way to encode the requirement that, for example, English
verbs must be associated with a subject or that transitive verbs must be associated with
an object. Koch addressses this problem, but only through a generate-and-test approach,
adding constraints to the grammar on the numbers of each type of dependency per category;
these constraints are then used to discard otherwise-successful parses.

24

3.3 DPSG

A different approach to discontinuous constituency is taken in a series of papers describing
a framework called Discontinuous Phrase Structure Grammar (van der Sloot 1989; Bunt
1991; Vogel and Erjavec 1994; Bunt and van der Sloot 1996). As a variant of phrase
structure grammar, its key feature is that discontinuity is modeled by phrase structure rules
that explicitly label some constituents as ‘internal context’. As an example, van der Sloot
provides the grammar in (52), which generates the parse tree in Figure 3.5 for the sentence
‘John will not come’.

(52) a) PN→ NP
b) S→ NP + V
c) S→ S + ADV
d) V→ AUX + [ADV] + V

Here the first three rules are standard context-free rules, while the last rule indicates that
a V may consist of an AUX and a V, with ADV (the bracketed element) interrupting the
continuity of the V. Here, ADV is referred to as the internal context of the rule, or as a
context daughter.

Bunt also discusses a version of the formalism modelled after ID/LP rules. In this
version, the ID/LP variant of (52b) is (53).

(53) V→ AUX, V ; ADV ; AUX < ADV, ADV < V

Here, the context daughters appear in a separate field of the rule; as a result, one does
not have to specify the order of the context daughters. Just as one traditional ID/LP rule
can abbreviate several context-free rules, so can one DPSG ID/LP rule abbreviate several
DPSG rules without changing the power of the formalism.

DPSG’s advantage, as Vogel and Erjavec (1994) have shown, is that it is only mildly-
context sensitive (yielding a complexity class no worse than O(n7)) as long as tree branches
are only allowed to cross to the left; this restriction does not limit the expressivity of the
formalism.

The parser described by van der Sloot (1989) acts much like a normal chart parser; in-
ternal context daughters are predicted and completed just like regular daughters, so that the
‘dot’ can only move over a context daughter when such a category in the proper location
has been licensedq. When a passive edge containing a context daughter is completed, how-
ever, the context daughter is re-scanned and allowed to complete with descendants of the
edge. Each edge contains a construction list that marks, for each of its daughters, whether
that daughter is a context daughter or not; as a result, the left index of any given edge’s
successor can be computed at any time. A node with a successor position corresponding to
the end of the string is considered to indicate a successor parse; this ensures that all context
daughters will eventually be incorporated as actual daughters at some level of the parse
tree.

For example, in Figure 3.5, the categories AUX, ADV, and V from the fourth grammar
rule will be predicted and completed in turn, forming a V node spanning positions 2 through
5, with successor position 3. This V node is then completed with the NP to form an S node
spanning positions 1 through 5, with successor position 3. This is completed with the S
rule, leading to a prediction of ADV (via rule c) at position 3. The context daughter is
re-scanned at this point and completes the S, forming an edge spanning positions 1 through
5 with successor position 5. Since this S node has a successor position corresponding to
the end of the string, it is considered to indicate a successful parse.

25

S

S

NP V

PN AUX ADV V

John will not come

Figure 3.5: Discontinuous Phrase Structure Grammar Tree

Thus while DPSG can be efficiently processed, the requirement that internal contexts
be explicitly stated makes it suitable only for languages with few discontinuities. For a lan-
guage like Latin or Sanskrit with almost completely-free word order, an arbitrary sequence
of elements can interrupt almost any other constituent – in effect, the internal context should
be X∗, where X is a variable over categories. Since the notation X∗ is not part of the formal-
ism, the grammar effectively has to be written many times over. Initially, a set of categories
is licensed. Then each of those categories, and each possible sequence of those categories,
has to be licensed as a possible internal context of each other category.

3.4 Topological Parsing

Given the popularity in descriptive linguistics of the topological field model (presented
in section 2.2.3), it seems natural that it would eventually be chosen as the basis for a
parsing formalism. This is an active field of research, and many direct topological field
parsing models exist. This section will take two such parsers as exemplars to support the
claim that the topological field model is too restrictive to serve as a general formalism
for linearization-HPSG. While it is necessary to have a formalism which can support a
topological field model, it is overly confining to force all linearization-HPSG grammars to
fit a topological field model.

3.4.1 Topological Dependency Parsing

Gerdes and Kahane (2001) present a formalism called Topological Dependency Grammar
(TDG). Under this formalism, a parser receives a dependency tree as input and determines
the corresponding topological hierarchy.

The formalism is quite complex and best presented in the form of an example. Consider
first the sentence in (54), with the dependency tree given in Figure 3.6. Note that, in
an extension to the version of dependency grammar described in section 3.2, Gerdes and
Kahane assume that each dependency relation is labelled with a syntactic relation.

(54) Zu
to

lesen
read

hat
has

diesem
this

Mann
man

das
the

Buch
book

niemand
nobody

versprochen.
promised

‘Nobody promised this man that they would read the book.’

The topological grammar that Gerdes and Kahane present consists of eight components.
Note that for purposes of illustration, Gerdes and Kahane assume that noun phrases are
atomic units; this presentation also omits any elements of Gerdes and Kahane’s grammar
that are not used while parsing (54).

26

Vfin: hat

X: niemand
subj

Vpp: versprochen
aux

X: diesem Mann

iobj

Vinf: zu lesen

inf

X: das Buch
dobj

Figure 3.6: Dependency Tree

1. A set of syntactic categories.

{Vfin, Vinf , Vpp, X}
Here, Gerdes and Kahane use the category X to abstract over structures unimportant
to their grammar; generally noun phrases or other arguments. The formalism addi-
tionally allows for abbreviations of disjunctions of categories: Y abbreviates “any
category”, and the formalism also allows for other abbreviations of the form V or
V¬fin.

2. A set of lexical items, each associated with a category.

X→ das Buch
X→ diesem Mann
X→ niemand

Vfin → hat
Vpp → versprochen
Vinf → zu lesen

3. A set of syntactic relations.

{aux, dobj, inf, iobj, subj}
R is an abbreviation for “any relation”, akin to the category Y.

4. A set of fields, each with a corresponding descriptor.

{i!, vf!, [!, mf*,]?, nf*, h!, o?, u?, −!, f}
There are four field descriptors, each detailing how many boxes the field can contain:
! indicates exactly one, ? at most one, + at least one, and * zero or more. One of
the fields (here, i) must be designated as initial. Field disjunction abbreviations are
again allowed; here, f stands for any of vf, mf, or nf. The field − is special in that it
may only be filled by a lexical item, rather than a box.

5. A set of boxes (word order domains), each with a corresponding description rule.

md→ vf [mf] nf
ed→ mf] nf

vc→ o h u
v→ −

(Note that “[”, “]”, and “−” are actual field names, not punctuation.) Each box
consists of a series of fields (defined below) that occur in exactly the order described.

6. The box permeability order, a ranking on boxes.

vc < ed < md

This order is interpreted in the context of the correspondence rules described in the
next item.

27

7. Correspondence rules, which relate the topological structure to the dependency struc-
ture.

C1) (R, Y, V,], −)
C2) (R, V, V¬fin, o, vc)

C3) (R, V, Y, f, ed)2

These rules have the form (rel, c1, c2, f2, b): if a word w2 of category c2 has a
dependency of type rel on a word w1 of category c1, then it may be targeted for a
field f2 in any box containing w1, as long as that box is not separated from w1 by
any borders ranked higher than b in the permeability order. As such, it is interesting
to notice that a compacted domain in this approach is simply one in which no cor-
respondence rule uses that domain or a domain that outranks it in permeability as a
boundary.

8. Box creation rules.

B1) (Vfin, i, md, [)
B2) (V¬fin, f, ed,])

B3) (V,]|u, vc, h)
B4) (V, [|h, v, −)

These rules detail the hierarchical structure of the boxes. A rule of the form (c, f, b,
f2) indicates that a word of category c targeted for field f instead creates a box b in
which the word is now targeted for field f2. These rules generally apply recursively
until a lexical box is created.

Note that the relationship between boxes and fields is mutually recursive: boxes contain
fields, and fields contain boxes. Such a topological structure can therefore be depicted in the
form of a tree in which alternate ranks contain fields (circular nodes) and boxes (rectangular
nodes). The parse of (54) proceeds as follows:

Step 1 (Figure 3.7): the root node of the tree (here, a Vinf) is first targeted for the initial
field i. Box creation rules then apply until a lexical box is created. In this case, only B1
applies to the pair (Vinf , i). An md box is created, and the Vinf is now targeted at the [field
within that box. The rule that applies to this new pair (Vinf , [) is B4, ending this step.

Step 2 (Figure 3.8): The first dependency considered is that of Vpp on Vfin. (Since none
of the correspondence rules in this example are conditioned on dependency type, the types
can be ignored.) Rule C1 applies, and so the Vpp will be targeted for the] field in the md
box containing the Vfin (since there is only one, permeability does not apply). The pair
(Vpp,]) matches B3, creating a vc box within which the h field is targeted. The pair (Vpp,
h) matches B4, ending this step.

Step 3 (Figure 3.9): The next dependency is that of Vinf on Vpp. Rule C3 can be applied,
targeting the Vinf for any major field. The Vpp is contained in two boxes: vc and md. Since
the final component of rule C3 is ed, which outranks vc in permeability, the vf field of the
md box can be chosen as a target. (If a less permeable field boundary had been specified,
then only the other fields within the lower vc box could have been targeted.) Now the box
creation rules apply. The pair (Vinf , vf) creates an ed box in accordance with B2; (Vinf ,])
creates a vc box by B3; and (Vinf , h) is lexical.

Step 4 (Figure 3.10): The final three dependencies are parsed in the same manner.
All invoke correspondence rule C3, which allows the Xs to permeate their various lower
domains and be placed in the mf. At this point there are no dependencies left, and each
field’s descriptor has been satisfied, so the parse concludes.

As can be seen, there are no LP constraints per se in this formalism – the relative order
of words is determined solely by the ordering of fields within boxes. In other words, if

2Gerdes and Kahane erroneously give this rule as (R, V, X, f, ed); it is clear from their sample parse that the third
element should be Y.

28

i

md

vf [

hat

mf] nf

Figure 3.7: Topological Dependency Parse: Step 1

i

md

vf [

hat

mf]

vc

o h

versprochen

u

nf

Figure 3.8: Topological Dependency Parse: Step 2

i

md

vf

ed

mf]

vc

o h

zu lesen

u

nf

[

hat

mf]

vc

o h

versprochen

u

nf

Figure 3.9: Topological Dependency Parse: Step 3

29

i

md

vf

ed

mf]

vc

o h

zu lesen

u

nf

[

hat

mf

diesem Mann das Buch niemand

]

vc

o h

versprochen

u

nf

Figure 3.10: Topological Dependency Parse: Step 4

a grammar writer wanted to model some of the constraints on word order in the German
middle field, they would have to add additional boxes and fields to the grammar that could
be created within the middle field. In a fixed word-order language like English, a grammar
writer would end up needing to create a near isomorphism between categories and fields,
obscuring the intent of the grammar. Given this inflexibility, the formalism cannot serve as
a backbone for naturally-described linearization-HPSG grammars.

3.4.2 Penn’s Topological Parser

Penn and Haji-Abdolhosseini (2003) describe a parsing formalism superficially similar to
that of the TDG parser. Unlike that parser, however, this parser simultaneously builds
up tectogrammatic and phenogrammatic structure. Those aspects of the input language
dealing with topological structure in Gerdes and Kahane’s TDG parser are the same in Penn
and Haji-Abdolhosseini’s formalism: a set of fields with field descriptors and a set of boxes
(now called regions) with the fields they contain. Penn and Haji-Abdolhosseini also assume
a set of categories, lexical entries, and phrase structure rules (annotated with constraints as
described below); the formalism as described can accomodate atomic categories or more
complex categories.

In the TDG parser, the recursive relationships between fields and boxes were mediated
by the box creation rules; given a category and the field it was targeted for, the existence
of a new box within that field was licensed. Penn and Haji-Abdolhosseini’s parser replaces
these rules with a set of linking constraints that make no reference to tectogrammatic cat-
egories. Linking constraints can be of the form r � f or f � R. The former have the
interpretation “all regions r are found in a field f ”; the latter, “all fields f contain one of
the regions in R”. Note that Penn and Haji-Abdolhosseini interpret the field descriptors in
a slightly different way than Gerdes and Kahane. For Penn and Haji-Abdolhosseini, a field
may contain at most one region, though a region may contain several instances of a field;
whereas for Gerdes and Kahane, a field only appears once in a box but may contain several
boxes. For example, in the topological structure produced by Gerdes and Kahane’s parser
(Figure 3.10), there is a single mf field with three boxes, one each for diesem Mann, das

30

Buch, and niemand. For Penn and Haji-Abdolhosseini, this would be described as a region
which contains several mf fields – one for each of the three arguments.

Penn and Haji-Abdolhosseini also choose to constrain, rather than specify, the rela-
tionship between the tectogrammatic and phenogrammatic structure. There are three such
types of constraints. The first all deal with correspondences between categories, fields, re-
gions, and RHS elements of tectogrammatic rules (here, φ is a category, f is a field, r is a
region, and i is a token):

φ covers f i covers f f covered_by φ
φ matches f i matches f f matched_by φ f matched_by i
φ covers r i covers r r covered_by φ
φ matches r i matches r r matched_by φ r matched_by i

As with the linking rules, the LHS of each constraint is universally quantified, and the RHS
is existentially quantifed (thus the need for both x and xed_by versions). One element is
said to cover another if the phonological yield of the first is a superset of that of the second;
they match if the two yields are equal. Constraints stated in terms of a token must be stated
on individual rules; all other constraints have global effect.

In addition, both categories and rule tokens can be specified as compacted (that is, no
discontinuities are present), and precedence constraints (both weak and immediate) can be
imposed on rule tokens.

Penn and Haji-Abdolhosseini do not provide an example grammar, and it is unclear in
general when a grammar contains enough constraints to actually parse with. The authors
describe a parsing strategy that alternates between top-down tectogrammatic parsing and
bottom-up phenogrammatic parsing. The parse starts by retrieving the categories for each
lexical item. Matching/covering constraints are then used to get a set of, in effect, ‘pre-
terminal’ fields. These fields are then parsed into regions, which may correspond to higher
tectogrammatic categories, and so on.

Thus while superficially quite different from the TDG parser, this parser suffers from
the same core problem – that word order constraints referring to elements in different (tecto)
local trees can only be expressed through field ordering, preventing the LP constraints in a
linearization-HPSG analysis from having any direct analogue – and is similarly unsuitable
as a linearization-HPSG backbone.

3.5 Suhre’s Linear Specification Language

The work most closely related to that presented in this thesis on parsing discontinuous
constituents has been done by Suhre (1999). Noting that a traditional context-free rule can
be seen as imposing a total order on its RHS, Suhre proposes a linear specification language
(LSL) based on rules where the RHS is only partially ordered. Specifically, the RHS of an
LSL rule consists of a directed acyclic graph whose vertices are categories and whose edges
may either be weak (denoting weak precedence between the relevant categories) or strong
(for immediate precedence); it must be possible to topologically sort the graph in order for
the rule to be valid. Some nodes may also be marked as isolated, in the sense that their
phonological yields will consist of an uninterrupted subsequence of the input string. It is
also possible to mark the LHS of a rule as isolated. An example LSL grammar is given in
(55).

(55) a) A→ B C

b) D→ E F

31

c) G → H I

In this grammar, (55)a has no precedence constraints, (55)b requires E to immediately
precede F, and (55)c requires H to weakly precede I. (A double circle around a category –
not seen in this example – would indicate that that category forms a word order domain,
while a double circle around the LHS would indicate that the local tree itself is a domain.)

Suhre’s parser is a variant of Earley’s algorithm (as will be described in section 5.1)
and will be discussed in greater detail in chapter 5. As a model for linearization-based
HPSG, Suhre’s LSL falls short in two respects. First, there is no way to directly describe
partial compaction phenomena (as described in section 2.2.2), as the formalism only allows
individual RHS elements, or the entire RHS, to form domains.

Second, there is no notion of a domain-specific constraint: all constraints are attached
to rules. As a result, word order constraints cannot be imposed on constituents outside
their local tree. This latter drawback was recognized by Fouvry and Meurers (2000), who
describe an implementation of Suhre’s LSL grammars with the addition of global LP state-
ments that are taken to hold within each word order domain.

3.6 Conclusion

This chapter has shown that no existing formalism in the literature allows both the capabil-
ity to independently specify ID rules and LP constraints and the ability to explicitly specify
the domains of LP constraints. As a result, a new formalism and parsing algorithm must
be developed to efficiently work with linearization-HPSG grammars. The next chapter will
define such a formalism.

32

Chapter 4

The GIDLP Formalism

As discussed in chapter 2, the central aspects of linearization-based HPSG grammars are
the word order domains and the linear precedence (LP) constraints that work within them.
Any formalism intended to serve as a backbone for such grammars must include avenues
for defining domains (including those domains that result from the partial compaction of
a local tree) as well as for stating LP constraints that can constrain the order of elements
originating in different local trees just as easily as of those originating in the same tree.
The survey in chapter 3 of existing frameworks for parsing with discontinuous constituents
shows that no current grammar formalism provides these facilities; as a result, a new for-
malism must be defined.

This chapter1 presents such a formalism: Generalized ID/LP (GIDLP) grammar. Sec-
tion 4.1 contains a discussion of the formalism, presented in an informal notation; section
4.2 gives some example grammars in the formalism; and section 4.3 presents a model of
the formalism as a rewriting system.

4.1 Generalizing ID/LP Grammar

4.1.1 Overview

Following the linear specification language developed by Suhre (1999), the GIDLP for-
malism is based on the syntax of ID/LP rules, augmented with a means for specifying the
relationship between the mother and daughters’ domain objects. As such, a GIDLP gram-
mar consists of three main parts (along with a set of categories and terminals): a set of
lexical entries, a set of grammar rules, and a start declaration.

GIDLP grammars also reference two additional types of statements: LP constraints
and domain declarations. LP constraints can be expressed in three contexts: in individual
rules (as rule-level constraints), in domain declarations (as domain-level constraints), and
over the entire grammar (as global constraints). Rule-level LP constraints are distinguished
from domain-level LP constraints in terms of their scope, as will be seen in section 4.1.5; in
contrast, global LP constraints are syntactic sugar – they simply allow a constraint which
applies to every domain in the grammar to be stated once. In contrast, global domain
declarations differ in notation and interpretation from rule-level domain declarations, as
will be described in section 4.1.6.

It should be noted that the GIDLP formalism takes syntactic categories to be the objects
of manipulation both in phenogrammar and tectogrammar, in the sense of (Curry 1961).

1Descriptions of the GIDLP formalism have already been published (Daniels and Meurers 2002, 2004a,b); the
formalism presented in this chapter is an extended version of those presentations.

33

Throughout this section, syntactic categories will be taken to be represented by feature
structure descriptions.

4.1.2 Lexical Entries

Lexical entries have the form A → t, stating that the terminal t may be an instance of
category A. For consistency, each lexical entry is taken to correspond to its own domain
object.

4.1.3 Grammar Rules

Grammar rules are effectively annotated ID rules; they have the form A → α; C; D, where
α is a set of categories (the RHS of the rule), C is a set of linear precedence constraints,
and D is a set of domain declarations.

If the sets of LP constraints and domain declarations are empty, we obtain the simplest
type of rule, exemplified in (56).

(56) S→ NP, VP

This rule says that an S may immediately dominate an NP and a VP, with no constraints on
the relative ordering of NP and VP. One may precede the other, the strings they cover may
be interleaved, and material dominated by a node dominating S can equally be interleaved.

When linear precedence constraints or domain declarations are present, they will im-
pose further limitations on the relative ordering of the daughters, as described in sections
4.1.5 and 4.1.6 below.

4.1.4 Start Declaration

The start declaration has the form start(S) : L, where S is a category and L a set of LP
constraints. Its main role is to state that S is the start symbol of the grammar (thus playing
the same role as the start symbol in a context free grammar). In addition, since the entire
input string is implicitly an order domain, any constraints unique to that domain must be
stated here.

4.1.5 LP Constraints

Intuitively, LP constraints enforce the idea that any instance of the LHS of the constraint
must precede any other instance of the RHS within the same context (either the RHS of a
grammar rule, or a word order domain). Specifically, consider all pairs of elements in the
context such that the phonological realization of the first completely precedes that of the
second. If any of these pairs jointly satisfies the pair description 〈B, A〉, the constraint is
violated.2 It is important to base this definition on satisfiability rather than unifiability – a
constraint cannot be said to apply until the categories involved are at least as specific at the
constraint’s descriptions; see section 6.2 for further discussion.

LP constraints may optionally require that there be no intervening material between the
two elements: this is referred to as immediate precedence. This operation in effect allows
for constituents to be bound together without affecting the word order domains.

LP constraints are notated as follows:

2This definition is due to (Kasper et al. 1995) and is intended to deal with cases where the nature of the match
between the first element and A will influence whether or not the second element matches B, and vice versa. This
point is further discussed in section 6.2.

34

• Weak precedence: A < B.
• Immediate precedence: A � B.

The symbols A and B may be categories, or pointers to specific elements of a rule’s right-
hand side (which are referred to as tokens). Constraints involving categories apply within
specified domains (either the domain on which a constraint is specified, or all domains, in
the case of global constraints). Constraints involving tokens, on the other hand, only have
meaning with respect to a specific rule (the tokens are invisible outside that rule) and can
only occur on individual rules. In this thesis, tokens are represented by numbers referring
to the subscripted indices on the RHS categories.

Note that one consequence of the pair-based definition given above is that a constraint
of the form A < A is satisfiable and has the effect of allowing at most a single instance of
the category named in the relevant word order domain. The constraint A � A has the same
meaning.

An example of a rule-level LP constraint is given as part of (57).

(57) A→ NP1, V2, NP3; 3 < V

This constraint specifies that the token 3 in the rule’s RHS (the second NP) must precede
any constituents described as V occurring in the same domain.

One can view the RHS of a context-free rule as a description of a totally-ordered set,
just as the RHS of an ID rule is a description of an unordered set. In this light, the effect
of those rule-level constraints involving tokens is to partially order the RHS of the GIDLP
rule. Category descriptions, on the other hand, are needed in order to have constraints that
operate on categories that, while part of the same order domain, were introduced in different
rules. Taken together with the option of specifying different constraints in different domains
(see section 4.1.6), these two ways of referring to categories allow the grammar writer
to develop grammars in which different environments require different relative orderings
between a common set of categories.

It should also be noted at this point that by default, all properties of a category are as-
sumed to be LP-accessible, as was the case in Reape’s work, where domain objects were
lists of signs. Other authors, like Kathol (2000), have argued that domain objects should
store only a certain set of properties. Section 4.1.6 will describe functionality for accom-
plishing this.

4.1.6 Domain Declarations

As the GIDLP framework is intended to serve as a backbone for linearization-HPSG gram-
mars, the analogues to Reape’s domain objects are not stated explicitly. Instead, domain
declarations are used to describe the desired domain objects.

A rule-level domain declaration has the form 〈{α}, A, L〉, where α is a list of tokens, A is
a category, and L is a set of LP constraints. Such a statement specifies that the constituents
referenced in α form a word order domain with category A, inside of which the constraints
in L hold.

Recall that partial compaction (see section 2.2.2) creates domain objects that are not
constituents; to accomodate this, the second component A in a compaction statement needs
to represent the linearization properties of the resulting domain object. In the case of total
compaction, the linearization properties of the domain object are generally but need not
be identical to those of the LHS category of the containing rule. In particular, in a system
where only certain properties of a category are LP-accessible, A will represent the result of
removing all other properties from the LHS of the containing rule. For example, a system
where non-local properties are not LP-accessible might include a rule like that in (58).

35

(58)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
a
local 1
non-local 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦→ B1 C2;; 〈{1, 2},
[
a
local 1

]
, []〉

When this domain object is subsequently evaluated with respect to LP constraints in higher
phrases, the non-local properties will not be able to influence the results. (One could get
the same effect, of course, by simply not writing LP constraints that reference non-local
properties. But this system makes the grammar writer’s intent clear.)

The domain declarations on a rule determine the relationship between the mother’s
word order domain and the daughters’ word order domains. If a given daughter is not
referenced in a domain declaration, then it is unioned into its mother’s word order domain;
if it is the sole category in a domain declaration, it will be inserted into its mother’s word
order domain as a compacted domain; and if it occurs along with other categories in a
domain declaration (as in (58)), these categories, taken together, will be inserted into their
mother’s word order domain as a single compacted domain.

For instance, in (59), each of the daughter S categories forms its own domain; they are
domain-inserted into the word order domain of the mother S. In (60), the righthand side of
the rule is partially compacted: the V and the first NP form a domain with category VP that
does not include the second NP.

(59) S→ S1, Conj2, S3; 1 � 2, 2 � 3, 〈{1}, S, []〉, 〈{3}, S, []〉
(60) VP→ V1, NP2, NP3; 〈{1, 2}, VP, []〉

One will often form a domain from only a single category without adding domain-
specific LP constraints, so an abbreviatory notation is introduced of writing such a com-
pacted category in square brackets. In this way (59) can be written as (61).

(61) S→ [S1], Conj2, [S3]; 1 � 2, 2 � 3

A final abbreviatory device is useful when the entire RHS of a rule forms a single
domain, which Suhre (1999) refers to as “left isolation”. This is denoted by using the token
0 in the compaction statement if linear precedence constraints are attached, or by enclosing
the LHS category in square brackets, otherwise. Thus (62), (63), and (64) are equivalent:

(62) S→ V1, Nom2, Acc3; 2 � 1, 1 � 3 ; 〈{1,2,3}, S, []〉
(63) S→ V1, Nom2, Acc3; 2 � 1, 1 � 3 ; 〈{0}, S, []〉
(64) [S]→ V1, Nom2, Acc3; 2 � 1, 1 � 3

The formalism also supports global compaction statements. A global compaction state-
ment has the form 〈A, L〉, where A is a category, and L is a list of domain-level precedence
constraints. The interpretation is that whenever the designated category appears on the
RHS of a rule, it always forms a compacted domain in which the given constraints hold.
As an example, one could model Blevins’s observation (see section 2.1.3) that only maxi-
mal projections form word order domains with the constraint in (65).

(65) 〈[subcat elist
]
, []〉

4.2 Examples

4.2.1 Mimicking a CFG

We start with an example illustrating how a CFG rule is encoded in GIDLP format. A
CFG rule encodes the fact that each element of the RHS immediately precedes the next,

36

and that the mother category dominates a contiguous string. The context-free rule in (66)
is therefore equivalent to the GIDLP rule shown in (67).

(66) S→ Nom V Acc

(67) [S]→ V1, Nom2, Acc3; 2 � 1, 1 � 3

4.2.2 Illustrating Domain Formation

In (68) we see a more interesting example of a GIDLP grammar. (To make the grammar as
compact as possible while still illustrating the same features, artificial categories have been
used.)

(68) a) start(A) : []
b) A→ B1, C2, [D3]; 2 < 3
c) B→ F1, G2, E3
d) C→ E1, D2, I3; 〈{1,2}, H, []〉
e) D→ J1, K2
f) Lexical entries: E→ e, . . .
g) E < F

(68a) is the start declaration, stating that an input string must parse as an A; the empty
list shows that no LP constraints are specifically declared for the domain. (68b) is a gram-
mar rule stating that an A may immediately dominate a B, a C, and a D; it further states
that the second constituent must precede the third (more precisely, following the definition
in section 4.1.5, it must not be the case that the third constituent completely precedes the
second constituent) and that the third is a compacted domain. (68c) gives a rule for B: it
dominates an F, a G, and an E, in no particular order. (68d) is the rule for C, illustrating
partial compaction: its first two constituents jointly form a compacted domain, which is
assigned category H. (68e) gives the rule for D and (68f) specifies the lexical entries (here,
the preterminals just rewrite to the respective lowercase terminal). Finally, (68g) introduces
a global LP constraint requiring an E to precede an F whenever both elements occur in the
same domain.

Now consider licensing the string efjekgikj with the above grammar. The parse tree,
recording which rules are applied, is shown in figure 4.1. Given that the domains in which
word order is determined can be larger than the local trees, we see crossing branches where
discontinuous constituents are licensed.

To obtain a representation in which the order domains are represented as local trees,
we can draw a tree with the compacted domains forming the nodes, as shown in figure 4.2.
This representation highlights the fact that not all nodes in the tectogrammatic structure
correspond to nodes in the phenogrammatic structure. The B node, for instance, does not
correspond to a domain, but instead to a set of domains {E, F}.

There are three non-lexical compacted domains in the tree in figure 4.1: the root A,
the compacted D, and the partial compaction of D and E forming the domain H within C.
In each domain, the global LP constraint E < F must be obeyed. Note that the string is
licensed by this grammar even though the second occurrence of E does not precede the F.
This E is inside a compacted domain and therefore is not in the same domain as the F, so
that the LP constraint does not apply to those two elements. This illustrates the property of
LP locality: domain compaction acts as a ‘barrier’ to LP application.

The second aspect of domain compaction, contiguity, is also illustrated by the example
in connection with the difference between total and partial compaction. The compaction
of D specified in (68b) requires that the material it dominates be a contiguous segment of

37

A

B C [D]

E F [D E]H G I K J

J K

e f j e k g i k j

Figure 4.1: Parse Tree Showing Tectogrammatic Structure

A

H D

e f j e k g i k j

Figure 4.2: Parse Tree Showing Phenogrammatic Structure

the input. In contrast, the partial compaction of the first two RHS categories in rule (68d)
requires that the material dominated by D and E, taken together, be a continuous segment.
This allows the E to occur between the two categories dominated by D.

4.3 Formal Model

What has been presented so far is an informal description of the GIDLP grammar for-
malism, complete with convenience notations and syntactic sugar. The following formal
model of a GIDLP grammar assumes that none of these convenience notations are being
used: specifically, all compaction statements are given in full, and global LP constraints and
domain declarations are not expressed as such, but rather appear on each relevant domain
and rule, respectively.

The formal model of a GIDLP grammar arises from the intuition behind the formal
definition of a context-free grammar:

A context-free grammar G is a quadruple (V,Σ,R, S), where V is an alphabet,
Σ (the set of terminals) is a subset of V , R (the set of rules) is a finite subset of
(V −Σ)×V∗, and S (the start symbol) is an element of V −Σ. The members of
V−Σ are called nonterminals. For any A ∈ V−Σ and u ∈ V∗, we write A→G u
whenever (A, u) ∈ R. For any strings u, v ∈ V∗, we write u ⇒G v if and only
if there are strings x, y ∈ V∗ and A ∈ V − Σ such that u = xAy, v = xv′y, and
A →G v′. The relation⇒∗G is the reflexive, transitive closure of⇒G. Finally,
L(G), the language generated by G, is {w ∈ Σ∗ : S ⇒∗G w}; we also say that G
generates each string in L(G). (Lewis and Papadimitriou 1998)

In particular, just as a context-free derivation is expressed as a series of strings over
the corresponding alphabet, a GIDLP derivation will consist of a series of domain objects,
each of which is rewritten into the next.

38

A GIDLP grammar and its components can now be formally defined. Note that the
following definitions are presented in a top-down fashion; each will make use of subsequent
definitions.

A GIDLP grammar is a quintuple 〈T,N,R, L,G〉 where T is a set of lexical items (ter-
minals), N is a set of categories (nonterminals), R is a domain object (the start symbol), L
a relation from T → N (the lexicon), and G a set of grammar rules (the grammar).

A domain object is a triple 〈A, α,C〉 where A ∈ N is the result category, α is a string of
categories and/or domain objects, and C is a set of LP constraints. A domain object is the
equivalent of a domain declaration in the informal description.

A grammar rule is a triple 〈A, α,C〉 where A ∈ N is a category (the LHS of the rule),
α is a string of category-token pairs 〈a, b〉, where a ∈ N and b ∈ N, and/or domain objects
(the RHS of the rule), and C is a set of LP constraints. For all distinct 〈a, b〉 , 〈c, d〉 ∈ α, it
must be the case that b � d (in other words, tokens may not be duplicated within a rule’s
RHS). Here, the main difference from the informal presentation is that there is no set of
compaction statements on the rule; instead, domain objects are allowed to intermingle with
categories on the rule’s RHS.

An LP constraint is a triple 〈a, b, t〉 where a, b ∈ (N ∪ N) and t ∈ {w, i} (representing
weak and immediate precedence, respectively). Such an LP constraint is satisfied by a
domain object when, for all pairs of distinct domain elements x, y such that x precedes y,
x, y does not match the pair description b, a. In addition, if t = i, then for all pairs of distinct
domain elements x, y such that x does not immediately precede y, it must be the case that
x, y does not match the pair description a, b.

Now let A be the domain object 〈a, αAβ,Cd〉 and A′ the domain object A′ = 〈a, γ,Cd〉.
If there is a rule r ∈ G such that r = 〈A, δ,Cr〉 and γ is a permutation of α · δ · β such that,
for all c ∈ (Cd ∪Cr), γ satisfies c, then we say that A⇒ A′ (read A derives A′ in one step).
In effect, γ represents a valid insertion of δ into αβ.

The transitive closure of⇒ is denoted⇒∗; when A⇒∗ A′, we say A derives A′, and A′
is derived from A. Finally, let a preterminal string s of a terminal string t with length n is a
string of length n such that for all n, 〈tn, sn〉 ∈ L. Then a string of terminals is recognized
by a grammar if there exists a corresponding preterminal string that can be derived from
the start symbol of the grammar.

As an example, the grammar in (68) is formally described in figure 4.3 (for clarity, rule
RHSs are given in terms of categories only instead of category-token pairs); the derivation
of the string efjekgikj is given in figure 4.4.

Note that, aside from the fact that the compaction statements appear ‘inside’ the rules,
(68) and figure 4.3 only differ in the absence of global order statements; as will be discussed
in section 5.2.2.1, these are merely an abbreviatory device for grammar writers.

4.4 Conclusion

The goal of this section has been to present a formalism in which the grammar writer
may define domains (including those domains that result from the partial compaction of a
local tree) and state LP constraints that can constrain the order of elements originating in
different local trees just as easily as of those originating in the same tree.

With the formalism presented in full, attention can now turn to the parsing algorithm,
which will be presented in the next chapter.

39

T = {e, f , g, i, j, k}
N = {A, B,C,D, E, F,G,H, I, J,K}
R = 〈A, [A], {〈E, F,w〉}〉
L = {〈e, E〉 , 〈 f , F〉 , . . .}
G = { 〈A, [B,C, 〈D, [D], {〈E, F,w〉}〉], {〈2, 3,w〉}〉 ,

〈B, [F,G, E], ∅〉 ,
〈C, [〈H, [D, E], {〈E, F,w〉}〉 , I], ∅〉 ,
〈D, [J,K], ∅〉}

Figure 4.3: Formal Presentation of a GIDLP Grammar

〈A, [A]〉
⇒ 〈A, [B,C, 〈D, [D]〉]〉
⇒ 〈A, [B,C, 〈D, [D]〉]〉
⇒ 〈A, [E, F,G,C, 〈D, [D]〉〉
⇒ 〈A, [E, F, 〈H, [D, E]〉 ,G, I, 〈D, [D]〉〉
⇒ 〈A, [E, F, 〈H, [J, E,K]〉 ,G, I, 〈D, [D]〉〉
⇒ 〈A, [E, F, 〈H, [J, E,K]〉 ,G, I, 〈D, [K, J]〉〉

Figure 4.4: Formal Derivation with respect to a GIDLP Grammar

40

Chapter 5

Parsing GIDLP Grammars With Atomic
Categories

This chapter1 presents an efficient algorithm for parsing grammars written in the GIDLP
formalism described in chapter 4. The chapter begins in section 5.1 by describing the
inspiration for the GIDLP parser. Section 5.2.1 describes the central concepts involved
in creating a GIDLP parser from a context-free parser, and then section 5.2 presents the
actual algorithm for GIDLP parsing over atomic categories. Section 5.3 concludes with
some long-form examples of the parsing process.

5.1 Earley’s Algorithm

Just as the GIDLP grammar format was developed as an extension of ID/LP grammar, we
turn to Earley’s algorithm (Earley 1970) – a memoizing algorithm for context-free parsing
– as a starting point for the GIDLP parser. Note that the notion of a chart parser, introduced
in (Kay 1980), postdates Earley’s algorithm, as does the now-standard terminology used
in discussions of chart parsing. This chapter will refer to a chart as a set of edges, rather
than Earley’s original terminology – a set of statesets, each of which is a set of states.
In addition, as will be discussed in section 5.1.1, this presentation will include several
commonly-made changes to the organization of the algorithm that will bring it closer in
form to the GIDLP parsing algorithm, thereby making the relationship between the two
algorithms clearer.

As with any parsing algorithm, Earley’s algorithm takes a grammar and a string of ter-
minals as input and determines whether the grammar in question licenses the input string; in
other words, whether a series of context-free rewriting steps could transform the start sym-
bol of the grammar into the input string, and then output a representation of that derivation.

The operation of the algorithm, given in figure 5.1, centers around two operations. In
the first, hypotheses are formed describing potential expansions of a current target category;
this process is referred to as prediction. The second combines information describing an
already-located subconstituent into a prediction, producing either a more specific hypothe-
sis or a well-formed substring; this is referred to as completion.

In chart parsing terms, the hypotheses are called active edges; they describe the poten-
tial for a category to be found covering a span that includes a given location and list the
additional evidence that will be needed to confirm this hypothesis. Thus the prediction step
creates one active edge based on another; the latter is said to be responsible for the former.

1Portions of the material in this chapter were originally presented in Daniels and Meurers (2002, 2004a); this
chapter reflects a revised and updated version of that material.

41

procedure earley:
initialize the chart with lexical edges
enqueue prediction of the start category
while the action queue is non-empty
dequeue the top action and perform it

examine the chart for successful parses

procedure predict(i[A→ α •j Bβ]):
foreach grammar rule B→ γ:
add an edge j[B→ •j γ] to the chart
enqueue prediction and completion with this edge

procedure complete(i[A→ α •j β]):
if β is empty:
foreach active edge k[B→ γ •i Aδ]
add an edge k[B→ γA •j δ] to the chart
enqueue prediction and completion with this edge

else let β = Eε:
foreach passive edge j[E → γ •k]
add an edge i[A→ αE •j ε] to the chart
enqueue prediction and completion with this edge

Figure 5.1: Earley’s Algorithm

Since the chart is a set of edges, any operation that attempts to add a redundant edge to the
chart will have no effect; in such cases, the redundant edge is said to have been blocked
from the chart.

The RHS of an active edge will grow smaller with each completion step, and once
completion yields an edge with an empty RHS (a final completion of that edge), the edge
is referred to as a passive edge. A passive edge encodes the information that a category has
definitely been found at a certain location in the input; the passive edge is said to provide
that category. Not all passive edges arise from completions, however; the term lexical
edges is used to refer to those passive edges that map lexical items in the input string to
preterminal categories. Completion can therefore be seen as creating a string of active
edges, starting with an edge formed by prediction (the ancestor of the edges in the string),
linked by other passive edges, and possibly terminating with a passive edge.

Formally, edges have the form i[A→ α•j β], indicating a parse state in which the string
from positions i to j matches α and an A will have been found if β is found immediately
following j. In an active edge, j is known as the active position, and the initial category B
of β is the active element of the edge; in a passive edge, β will be empty.

Early work on parsing (Younger 1967; Kasami and Torii 1969) made use of the notion
of a well-formed substring table: a data structure containing the passive edges that had
been found to date. Earley’s algorithm extends this concept by storing both passive and
active edges in a data structure known as an active chart.

As explained in figure 5.1, the parse begins by predicting the start symbol of the gram-
mar. Each time an edge is added to the chart, the parser responds by triggering further
prediction and completion steps. Once the chart has finished responding to the initial pre-
diction and its consequences, every passive edge in the chart spanning the entire input string
that provides the start symbol indicates a successful recognition.

42

As a result, the edges in the chart at the end of the parse can be arranged into a tree,
with each edge having the active edge that created it as its parent. Each leaf in this tree
represents an edge for which prediction and completion yielded no new edges. Thus all
optimizations will take two forms: reducing the amount of effort needed to compute a
newly-predicted or completed edge, and finding ways to make the search tree smaller. If
an edge can be identified for which no children will ever contribute to a successful parse,
preventing that edge from being added to the chart will prune that entire branch of the tree,
leading to potentially considerable savings.

5.1.1 Modifying Earley’s Algorithm

In the years since it was initially published, researchers have put substantial work into the
analysis and implementation of Earley’s algorithm and potential improvements. The ver-
sion of Earley’s algorithm presented in the previous section differs from Earley’s original
presentation by the addition of lexical seeding and active completion.

In Earley’s original algorithm, a third operation – scanning – is used to insert lexical
edges into the chart when the active category is a terminal. The parser described here
seeds the chart with all of the lexical edges before the parse begins (so that only those pre-
terminal rules are predicted whose lexical items appear in the input string). This is done
to strengthen the bottom-up component, which is important considering the overall goal
of parsing linearization-based HPSG grammars, where much of the information guiding
parsing originates in the lexicon.

Eliminating scanning also requires modifying the triggering of prediction and comple-
tion steps, however. In Earley’s algorithm, only a single step is triggered each time an
edge is added to the chart: if the active category is a non-terminal, prediction triggers; if
a terminal, scanning triggers; and if empty, completion triggers. But when lexical seed-
ing is performed, and pre-terminal rules are no longer predicted, completion must occur
whenever an edge is added to the chart, regardless of whether the entered edge is active or
passive.

Yet even if lexical seeding were to be abandoned, this change would still need to be
present in the GIDLP parsing algorithm. Because context-free parsing proceeds from left
to right, Earley can assume that all possible active edges that will need a given category
will have already been created when the passive edge is added to the chart. GIDLP parsing
cannot proceed from left to right, however, since the grammar writer is able to specify the
order in which categories are to be located (see section 5.2.1.2).

5.2 The GIDLP Parsing Algorithm – Atomic Categories

5.2.1 Design Considerations

It is useful to discuss several concepts that manifest themselves throughout the parsing
algorithm before the actual steps of the algorithm are presented and discussed.

5.2.1.1 Edge Coverage

The single interval formed by i and j stored on each edge in Earley’s algorithm is not
sufficient to model edge coverage in a grammar that licenses discontinuous constituents,
as each edge may potentially be covered by a discontinuous subset of the string. Johnson
(1985) showed that this issue can be addressed by generalizing from single intervals to lists
of intervals: for example, [1-3, 5] represents an edge that covers the first, second, third, and
fifth words of the input.

43

As Johnson pointed out, such lists of intervals are conceptually equivalent to bitvectors
– vectors of bits, each of which directly corresponds to a string position. When the bit
is active, its position is considered to be included in the coverage of the vector; when
the bit is inactive, it is not. Reape (1991a) uses prolog lists to encode bitvectors, so that
each position may be either true, false, or a prolog variable. As is known from other
applications, bitvectors can also be encoded as integers by representing them as binary
numbers,2 with the least-significant bit of the number corresponding to the leftmost word
in the input string. A position set to 1 is referred to as active (versus inactive for 0 bits).
(Note that this representation can be confusing at first when bitvectors are presented as
binary numbers, since the leftmost word in the string is represented by the rightmost digit
in the number.)

The merits of each style of representation can best be determined by considering a set
of relevant bitvector operations necessary for GIDLP parsing; these are given in figure 5.2.
Here, x and y are bitvectors, p is a 0-based position index, and and, or, xor, and not are
the ordinary bitwise operators. In the examples, the bitvectors are assumed to be five digits
long.

The primary advantage of lists of intervals is constant-time checking for isolation: if
the cardinality of the list of intervals is one, the edge is isolated. On the other hand, all
of the other operations needed to retrieve and use edges in parsing, such as overlap and
combine, are linear in the length of the lists of intervals (which, in the worst case, only
differs from the length of the input string by a constant multiple). Reape cites the flexibility
of the list-based representation – the possibility to mark a position as unknown by using
an anonymous variable – as an advantage of that method of representation, but the list
representation incurs the same efficiency penalty as the lists of intervals representation.

With an integer representation, in constrast, all necessary bitvector operations can be
computed as numeric expressions that require time proportional to a logarithm of the length
of the input string (where the base of the logarithm is the word size of the executing proces-
sor; the exact details depend on the interaction between the processor and the language
support for large integers, sometimes referred to as ‘bignums’). In the linearization parsing
literature, Ramsay (1999) seems to have been the first to explore this possibility, giving
definitions of overlap and combine and an alternative way of computing isolated.

5.2.1.2 The Dot

It should be observed at this point that the GIDLP parser retains the notion of a single active
element per edge, even though any of the RHS categories might occur leftmost in the input
string; this is in contrast to Suhre (1999), who essentially follows the direct ID/LP parsing
tradition (see (Volk 1996) and references cited therein) by predicting all graph-minimal
categories – those categories which no constraint on the rule requires anything to precede –
in every rule. For example, in the grammar presented in (69) (originally presented as (55)),
there would initially be a dot before the categories B, C, E, and H.

(69) A→ B C

D→ E F

G → H I

2For example, Davis (2002) mentions the use of integer representations of bitvectors in the context of machine
translation, and some of the inspiration for the bitvector computations below stems from bitboard-based com-
puter chess discussions on rec.games.chess.

44

singleton(p): In which bitvector is p the only active position?
Computed as 2p

Example: singleton(1) is 00010.

overlap(x, y): Is there a position active in both x and y?
Computed as and(x, y) � 0
Example: 10111 and 01010 have a bitwise-and of 00010, and therefore overlap.

combine(x, y): What is the union of x and y?
Computed as or(x, y)
Example: 10110 and 01010 combine to form 11110.

rbound(x): What is the most-significant active bit in x?
Computed as �log2(x)�
Example: the right bound of 01010 is 3, which is �3.32�.

lbound(x): What is the least-significant active bit in x?
Computed as rbound(xor(x, x − 1))
Example: the left bound of 01010 is 1, which is the right bound of 00011 = xor(01010,
01001).

prefix(p): What bitvector covers all positions ≤ p?
Computed as 2p+1 − 1
Example: prefix(3) is 01111 (15).

suffix(p): What bitvector covers all positions ≥ p?
Computed as not(2x − 1)
Example: suffix(3) is not(00111) = 11000.

precede(x, y): Does x completely precede y (where x and y are assumed not to overlap)?
Equivalent to x < y
Example: 00011 (3) precedes 01100 (12).

iprecede(x, y): Does x immediately precede y (where x and y are assumed not to overlap)?
Equivalent to rbound(x) = lbound(y) − 1
Example: the right bound of 00011 is 1, and the left bound of 01100 is 2, so 00011
immediately precedes 01100.

isolated(x): Does x form a continuous unit?
Equivalent to x = and(prefix(rbound(x)), suffix(lbound(x)))
Example: With the vector 01101, and(01111, 11111) is 01111 � 01101, so 01101 is not
isolated.

Figure 5.2: Common Operations on Bitvectors

45

In Earley’s original parser, the dot can be seen to serve two purposes: (1) it indicates
the portion of the string that has already been incorporated into chart edges; and (2) it
distinguishes the categories that have been found from those that are left, highlighting the
active category as the category to next be located.

In the GIDLP parsing algorithm, the first purpose is served by the coverage vector (as
discussed in the previous section); thus the dot only has the second purpose. Since every
element on the RHS of a rule has to be found at some point for that rule to be successfully
completed. And as was stated in section 4.1, the RHS of a GIDLP grammar is conceptually
a set of categories – not an ordered list. As a result, the use of multiple dots is unnecessary.

When only a single dot is used, a GIDLP parser is free to use the RHS order for other
purposes. The parsing algorithm described in this chapter uses the RHS order to determine
the order in which the RHS categories are predicted. As a result, the grammar writer can
use the order to specify those daughters to be searched first which are most likely to cause
an early failure. For example, a rule introducing a conjunction of sentences can be specified
as (70).

(70) S→ Conj1, S2, S3 ; 2 � 1, 1 � 3 ; 〈{2}, [], S〉, 〈{3}, [], S〉

This causes the parser to look for the easy-to-identify conjunction before it tries to find the
potentially-complex conjunct sentences.

One might object that it is unreasonable to expect a grammar writer to take process-
ing considerations into account. It must be observed, however, that the RHS order has no
impact on the correctness of the resulting parse. Much of the work of finding the opti-
mal ordering for the categories in a rule could be accomplished either at compile time by
heuristics of varying complexity, by profiling the grammar on a suitably-exhaustive test-
suite (akin to the quick check computation described in section 6.1.2), or by hand as the
grammar is written. For the sample grammars presented in this chapter, two heuristics
were followed: categories should be ordered by the number of times each is mentioned in
an order constraint in that rule, and exclusively pre-terminal categories should be ordered
before other categories. Both of these considerations, for instance, lead to ordering the
Conj element first in (70). In section 7.3.2, a similar heuristic based on head status will be
seen.

5.2.1.3 LP Constraint State Representation

One of the key criticisms made in chapter 3 of many algorithms for parsing with dis-
continuous constituents was that the LP constraints, if present at all, were only used in a
generate-and-test fashion. In order for the GIDLP parsing algorithm to not fall prey to this
same criticism, it must be possible for the prediction step to intelligently take word order
constraints into account.

In principle, once a daughter of an active edge has been found, the other daughters
should only be predicted to occur in string positions which are compatible with the word
order constraints of the active edge. For example, consider the edge in (71).3

(71) A→ B1 • C2 ; 1 < 2

This notation represents the point in the parse during which the application of a rule A →
B1C2; 1 < 2 has been predicted, and a B has already been located. For the sake of example,
assume that B has been found to cover the third position of a five-word string. Two facts

3Many of the examples in this chapter and the next will be given in terms of arbitrary a-b-c categories. This allows
the examples to be presented with as little scaffolding as possible.

46

are now known: from the order constraint 1 < 2, C cannot precede B, and from the general
principle that the RHS of a rule forms a (perhaps non-contiguous) partition of its LHS, C
cannot overlap B. Thus C cannot cover positions one, two, or three.

The core of the GIDLP parsing algorithm, and one of the central insights of this thesis,
is that the same data structure used to describe the coverage of an edge can encode these
kinds of restrictions on the parser’s search. This is accomplished through two additional
uses of bitvectors: as negative masks (n-masks) and as positive masks (p-masks).

The n-mask on an edge constrains the set of possible coverage vectors for the edge.
The 1-positions in an n-mask represent the positions that are masked out: the positions that
cannot be filled when completing this edge. The 0-positions in the negative mask represent
positions that may potentially be part of the edge’s coverage. For the edge in (71), the
coverage vector for the edge would be 00100, since only the third word B has been found
so far. Assuming no additional restrictions from a higher rule in the same domain, the
n-mask for any edge predicted to provide C would be 00111, encoding the fact that the
final coverage vector of the edge for C must be either 01000, 10000, or 11000 (that is, C
must occupy position four, position five, or both of these positions). In essence, then, the
negative mask encodes information on where the active category cannot be found.

In contrast, the p-mask encodes information about the positions the active category
must occupy. This knowledge often arises from immediate precedence constraints. For
example, consider the edge in (72).

(72) D→ E1 • F2 ; 1 � 2

If an E occupies position one, then any F must at least occupy position two; this would be
represented by a p-mask of 00010.

Taken together, the n-mask and p-mask encode all information available to the parser
when the edge is constructed about the edge’s potential coverage.

5.2.1.4 Domains in Earley’s Algorithm

One of the primary advantages of a chart parser like Earley’s algorithm is the fact that
passive edges need only be constructed once; if a given passive edge doesn’t immediately
trigger a completion, it remains in the chart to be picked up during future completions. As
a result, it won’t always be the case that the parser knows what domain a given passive
edge will be used in. Consider the grammar in (73):

(73) a) root(A, [])
b) A→ B1, C2 ; 1 < 2
c) B→ D1
d) C→ D1 ; ; 〈{1}, [E < F], D〉
e) D→ E1, F2

This grammar accepts the strings EFEF and FEEF and rejects the strings EFFE and FEFE.
Consider the process of parsing the string FEFE. Given rule (73e), the last two symbols of
the string constitute a D. By rule (73c), this D is also a B. It is not, however, a C: rule
(73d) states that Cs dominate contiguous sections of the input within which all Es precede
all Fs. As presented so far, a passive edge stores relatively little information: a category
label and a bitvector representing the edge’s coverage. In the example above, the passive
edge would simply say that a D has a coverage of 1100. It is impossible to tell from this
alone whether such a D would be an acceptable C or not.

The parser could simply store each edge’s parse tree (leaving out daughters of com-
pacted constituents) and examine that tree each time a new domain constraint becomes

47

relevant (as in the example above). This is inefficient in general, though – the parse tree of
a given edge might turn out to be arbitrarily deep. In addition, under this solution even a
recognizer would have to maintain candidate parse trees, thus negating any practical differ-
ence between a recognizer and a parser for the GIDLP formalism.

Instead, the parser uses the notion of dormant (contrasted with active) order constraints.
When the grammar is compiled (see section 5.2.2.1) all domain-local LP constraints (that
is, those not introduced on individual rules) are added as dormant constraints in every other
domain. A dormant constraint is still tracked and updated (as will be described in section
5.2.2.9) as normal, with the exception that a constraint violation does not prevent an edge
from being created (as a violation in an active constraint does). Instead, it merely reduces
the number of domains that the edge could be completed into in the future. When a domain-
introducing rule is predicted from a mother edge, if any of the dormant constraints for that
domain had already been violated on that edge, that prediction will not create any new
edges. In essence, the set of dormant constraints can be seen as a ‘distilled’ version of the
edge’s parse tree: the minimal amount of information needed to determine future domain
memberships.

Thus in the example above – attempting to parse the ungrammatical string FEFE – the
last two symbols would still parse as a D, albeit one that violates the dormant constraint
E < F. This D would then parse as a B via the second rule without a problem, but correctly
fail to parse as a C via the third rule, as the dormant constraint would become active at that
point.

5.2.1.5 Edge Subsumption and Ambiguity Packing

The primary intuition behind a chart parser is that any given parsing hypothesis is only
examined once; as such, chart parsing falls into the general class of memoizing algorithms,
which record intermediate results to avoid redundant computation. In context-free parsing,
where edges are small and contain relatively little information – two pointers to string
positions, a pointer to the governing rule, and a pointer to the dot’s position within the
rule – four pointer-equality tests are enough to detect whether a proposed edge would be
redundant and should be blocked from the chart.

An edge for a GIDLP parser contains much more information, however – a coverage
bitvector replaces the start and end pointers, and instead of just storing a pointer to the
rule, the parser must keep track of the rule’s constraints as they’ve been updated (as will be
described in section 5.2.2.9. In addition, a binary equal–nonequal distinction is no longer
sufficient when comparing fields from different edges: instead, one field of an edge may
be more specific, identical, or less specific than the other. These notions generalize to the
edge as a whole: one edge is at least as general as another as long as all of its fields are at
least as general as the corresponding fields on the other edge.

The notion that an edge would be redundant if a more general edge is already present
in the chart is a straightforward generalization of the nature of the chart; Oepen and Car-
roll (2000) refer to this process as proactive ambiguity packing. Less clear, however, is
the related situation in which an edge proposed for addition to the chart is more general
than an edge in the chart. There are two options: a parser can add the new edge to the
chart, in which case some derivations will end up being performed multiple times (as any
consequence of the existing edge will also be a consequence of the new edge), or the edge
already in the chart can be removed and replaced with the new edge; this process is referred
to as retroactive ambiguity packing. On the basis of some practical experiments, Oepen and
Carroll (2000) conclude that a parser using both of these forms of ambiguity packing has a
clear empirical advantage over one that does not. They do not, however, provide any results
on the relative merits of proactive and retroactive ambiguity packing.

48

It is clear that the implementation of retroactive ambiguity packing in the GIDLP pars-
ing algorithm would be expensive – the parser would need to walk through the agenda and
replace references to the old edge (in the parsing agenda and in the backpointer classes dis-
cussed in the next section) with the new edge, and recompute the consequences of the old
edge. Thus in the absence of evidence that retroactive ambiguity packing leads to an overall
increase in efficiency, the GIDLP parsing algorithm does not currently include retroactive
ambiguity packing.

5.2.1.6 Backpointer Classes

When a passive edge is created through completion, the parser needs to find edges to com-
plete the new edge with. In Earley’s algorithm, each edge stores a pointer to the initial
position of its ancestor edge; when the edge needs to be completed, only those edges with
the given initial position are considered.

With the GIDLP parsing algorithm, there are no longer ‘initial positions’ to be used in
such a manner, and a replacement must be found. The easy way out is to attempt completion
of the new passive edge with any active edge seeking the category that the passive edge
provides. An optimization (somewhat analogous to what is done in some unification-based
parsers; see section 6.1.1.2) is to only complete an edge with the ancestor edge that spawned
it in the first place. The idea seems simple to implement in practice – store a pointer to the
responsible edge when an edge is predicted, and propagate that pointer through all edges
completed from that edge.

This is complicated by ambiguity packing, however. In particular, if a predicted edge
P1 is not added to the chart because another identical edge P2 is already there, then the edge
responsible for P1 needs to also be considered responsible for P2. For example, assume a
grammar with rules S→ NP, VP; NP→ PP, NP; and PP→ P, NP (among others). Assume
that a parse starts with edge (74). The category NP is predicted, and edge (75) is created,
storing a backpointer to its responsible edge. Next, PP is predicted, leading to (76) with
a backpointer to its responsible edge. Assume the parser then completes (77) with a P,
yielding edge (77); the backpointer is unchanged. Predicting the NP leads to edge (78),
which won’t be entered into the chart as it duplicates edge (75). Then when edge (75) is
completed (via other rules), its backpointer only points to (74), and so the parser would
never try to complete that edge with (77), and the parse would not succeed.

(74) S→ • NP VP; from . . .

(75) NP→ • PP NP; from (74)

(76) PP→ • P NP; from (75)

(77) PP→ P • NP; from (75)

(78) NP→ • PP NP; from (77)

It might be argued that it is incorrect to let an edge be blocked from addition to the chart
in the presence of differing backpointers; after all, the concept of a chart is that only exact
duplicates are blocked. Following that argument, however, would lead the parser to be-
come susceptible to the same problem that Earley’s algorithm was designed to avoid: non-
termination in the presence of left recursion. Consider a grammar with one rule A→ A A
(and one lexical item with category A). The parser initially predicts edge (79). Prediction
from (79) yields (80); prediction from (80) yields (81), and so on. Each edge has a different
backpointer than the previous edge, and the parser will therefore never terminate.

(79) A→ • A A; from . . .

49

(80) A→ • A A; from (79)

(81) A→ • A A; from (80)

This problem can be resolved by maintaining equivalence classes of backpointers,
which will be referred to as backpointer classes, rather than backpointers themselves. Each
backpointer class is a group of pointers to parents (active edges) and children (passive
edges), and each edge is marked with its backpointer class number. When an edge formed
by prediction is added to the chart, it is assigned a backpointer class containing only its
parent. When an active edge formed by completion is added to the chart, it is assigned to
the same backpointer class as its parent active edge. (Note that these steps are unchanged
from the strategy described above.) New to this approach is the idea that when an edge
formed by prediction is blocked from being added to the chart, its parent is added to the
parent set of the backpointer class of the edge that blocked addition into the chart.

The child set of a backpointer class then contains all passive edges having the parent
edges as their ancestors: when a passive edge formed by completion is added to the chart,
it is added to its backpointer class as a child. When such an edge is blocked from the
chart, indicating a structural ambiguity (see section 6.1.1.1), the parser must make that
edge available to its ancestors for completion without adding a redundancy to the chart.
This is done by merging the backpointer class of the blocked edge with the backpointer
class of the blocking edge – in effect declaring them to have been the same backpointer
class.

Thus, in the situation described in the example above, when (78) was blocked from the
chart, its responsible edge (77) would be added to the parent set of (75)’s backpointer class;
thus any passive edges resulting from (75) will be available for completion with (77), and
the parser will now give the correct results.

5.2.2 The Algorithm Itself

Now that the building blocks have been presented, the algorithm for parsing GIDLP gram-
mars can now be given in figure 5.3. The following sections will explain each of the steps
in the algorithm; section 5.3 will provide two example parses to serve as macro-level ex-
amples.

5.2.2.1 Grammar Compilation

Grammars are compiled into an internal representation prior to parsing; this is necessary
for two main reasons. First, the grammar format contains a number of abbreviatory de-
vices: syntactic sugar for some domain declaration cases and the chance to use global
order constraints instead of stating a constraint every time a domain is established. These
abbreviations need to be normalized so that the parsing algorithm can consider them in a
singular fashion. Additionally, mixed LP constraints (ones written in terms of a rule to-
ken and a category description) must be stated in rules, so that the parser knows which
rule’s tokens are indicated, yet must be kept track of as domain-level constraints, in case
the described category is located first.

The processes described so far are mechanical, but three steps deserve further atten-
tion. Following (Haji-Abdolhosseini and Penn 2003), the minimum and maximum cate-
gory yields of each rule are calculated during grammar compilation for use during the parse
(see section 5.2.2.6). Finally, the integrity of the grammar may be checked by calculating
the reachability of each domain (the set of categories that may occur within the domain).
In so doing, it is possible to locate domain-level constraints mentioning unreachable cat-
egories (that is, those that will never affect the parse). An implementation can then point

50

procedure earley:
compile the grammar (section 5.2.2.1)
initialize the chart and the agenda (section 5.2.2.5)
while the action queue is non-empty
dequeue the top action and perform it

examine the chart for successful parses

procedure predict(A): (section 5.2.2.6)
foreach grammar rule providing A’s active category
compute the masks for the new edge (section 5.2.2.7)
evaluate the masks for edge viability
attempt to add the edge to the chart
enqueue prediction and completion with this edge

procedure complete(P, A): (section 5.2.2.8)
check that A and P do not overlap
update the LP constraints and domain declarations on the edge (section 5.2.2.9)
attempt to add the new edge to the chart
enqueue prediction and completion with this edge

Figure 5.3: GIDLP Parsing Algorithm

these out to the user for corrective action. Each of these steps will now be described in
turn.

5.2.2.2 Minimum Yield

The minimum yield of each rule is defined as the minimum number of lexical items that the
LHS of the rule could dominate. This calculation can be seen as an instance of bottom-up
grammar flow analysis (GFA): a family of related problems that can be solved by the same
generic procedure (Möncke and Wilhelm 1982). In their terminology, the flow information
space – the space of possible answers to the question being asked – is the whole numbers.
The information propagation function (which computes the value for a rule given the values
for each RHS element) is addition. The information combination function (which computes
the value for a non-terminal based on the values for each rule generating that non-terminal)
is minimum.

A variety of algorithms (Jourdan and Parigot 1990) are available to solve GFA prob-
lems; at an abstract level, the value for each rule and non-terminal are computed in turn
until a fixed-point is reached. Optimization techniques can analyze a given grammar to find
the ideal order in which values should be computed; this is, of course, only merited when
the individual computations are more time-consuming than the optimization analysis.

To give an example of the minimum yield calculation, consider the grammar4 in figure
5.4. Here, the minimum yield of the first rule is (via the information propagation function)
the minimum yield of an np plus the minimum yield of a vp; the minimum yield of an np is
(via the information combination function) the minimum of the minimum yield of rules (b)
and (d). Applying a GFA algorithm gives minimum yields of 5, 2, 3, 5, 6, and 3 for rules
(a) – (f), respectively, as illustrated by the sample constituents.

4Since LP constraints are irrelevant for this example, they have been omitted.

51

a) s→ np, vp the dog met the cat
b) np→ det, n the dog
c) vp→ v, np met the cat
d) np→ np, pp the cat on the lawn
e) vp→ vp, pp met the cat on the lawn
f) pp→ p, np on the lawn

Figure 5.4: Minimum Yield Example

5.2.2.3 Maximum Yield

In principle, the task of calculating the maximum yield of each rule is an almost-identical
instance of GFA; the only change is that the information combination function must now
be maximum instead of minimum. With this change, however, the GFA algorithm is no
longer guaranteed to terminate; any recursion in the grammar, whether direct or indirect,
leads to an unbounded maximum yield. Thus the actual maximum yield problem is to first
determine whether a rule has an infinite or finite maximum yield, and then to compute the
finite maximum yields in the grammar. For instance, in the grammar of figure 5.4, only
rule (b) has a finite maximum yield (namely, 2).

The detection of those rules involved in a recursion is straightforward, as any such
recursion must correspond to a cycle in the corresponding grammar graph (Möncke and
Wilhelm 1982). A grammar graph has nodes corresponding to each rule and nonterminal
in the grammar; each rule node then has in-edges from each nonterminal on its RHS and
an out-edge to its LHS nonterminal. For example, the grammar graph of the grammar in
figure 5.4 is given in figure 5.5. In this figure, the square nodes represent rules, while the
circular nodes represent non-terminals.

Each cycle in this graph (for instance, NP→ 6→ PP→ 4→ NP) is a recursion; every
node along such a cycle will have infinite maximum yield. Now recall from graph theory
the notion of a strongly connected set of nodes: a path exists from every node in the set to
every other node in the set. A strongly connected component (SCC) of a graph is then a
strongly connected set of nodes such that the addition of any other node would cause the
set to no longer be strongly connected. A graph may be partitioned into its SCCs; those
SCCs containing only a single node (singleton SCCs) correspond exactly to those nodes
not involved in any cycles. Finally, note that for any directed graph G with nodes g1 . . . gn,
a graph G′ can be constructed whose nodes g′1 . . . g

′
n are the SCCs of G and which contains

an edge (g′i , g
′
j) whenever an edge (ga, gb) exists in G and it is the case that g′i = S CC(ga)

and g′j = S CC(gb); this is the SCC graph of G. For example, the SCC graph of figure 5.5
is given as figure 5.6.

Once the cycles have been detected, the SCC graph can be topologically sorted to
provide an order in which the maximum yield of each node can be calculated in a single
pass. A topological order on a graph is an order on the nodes of a graph such that, for
any pair x < y in the order, there is no path from y to x in the graph. For example, one
topological order in figure 5.6 is Det, N, 2, P, V, SCC, 1, S.

The algorithm for calculating maximum yields is therefore as follows:

1. Construct the grammar graph G and the corresponding SCC graph G′.
2. Assign a maximum yield of∞ to all nodes in non-singleton SCCs.
3. Calculate the maximum yield of each SCC node in topological order, according to

the SCC graph.

Here, being (exclusively) preterminals, Det, N, P, and V all have maximum yield 1; r2 has
maximum yield 2; and the remaining nodes have infinite maximum yield.

52

S

1

NP 4 PP 5 VP

2 6 3

Det N P V

Figure 5.5: Grammar Graph

S

1

SCC

2

Det N P V

Figure 5.6: Strongly Connected Component Graph

5.2.2.4 Reachability

A constraint can be described as relevant to a given domain whenever both of its categories
are simultaneously reachable in that domain. Thus the final task in grammar compilation
is to determine the reachability of each domain: the set of categories that may occur inside
that domain. Closely related is the notion of category reachability: the set of categories
that can occur in the same domain as a given category. Note that reachability must be
represented as a set of sets, as categories may have disjunctive expansions: in figure 5.7,
for example, the category E may expand as to either a J and a G, or an H and an I.

The compiler first calculates the immediate reachability of each category: for each
rule generating that category, it takes the set of RHS categories, minus those categories
mentioned on domain declarations, plus the result categories of any domain declarations
(collectively, the visible categories of that rule). Each such set is a member of the immedi-
ate reachability of that category. For example, the immediate reachability of each category
in figure 5.7 is shown on the left side of figure 5.8.

The GFA algorithm is then used to calculate the reachability of each category. Here,
the value space is sets of sets of categories. The information propagation function returns
the union of the visible categories on each rule with the reachability of those categories
that are not the result category of a domain declaration. The information combination
function × takes two sets of sets and forms a “product” of the two sets: given S 1 and S 2,

53

a) start(A) ; B < C
b) A→ B, [C]
c) C→ D, E, F ; 〈{1,3}, [D < F, E � F], J〉
d) E→ F, G ; 1 < 2
e) E→ H, I ; 1 < D
f) [F]→ F, C ; E � 1
g) E < B, F < I, F < G

Figure 5.7: Example Grammar for Reachability

Initial Final
A {{B, C}} {{B, C}}
C {{J, E}} {{E, F, G, J}, {E, H, I, J}}
E {{F, G}, {H, I}} {{F, G}, {H, I}}
F {{F}} {{F}}

Figure 5.8: Category Reachability

it returns {x|a ∈ S 1, b ∈ S 2, x = a ∪ b}. For example, {{a, b}} × {{c, d}} = {{a, b, c, d}}
and {{a, b}, {c, d}} × {{e, f }, {g, h}} = {{a, b, e, f }, {a, b, g, h}, {c, d, e, f }, {c, d, g, h}}. The final
reachability of each category is given on the right side of figure 5.8.

At this point, the reachability of each domain can be calculated. Each domain reaches
the categories it contains as well as the categories they reach. Since at this point the full
reachability of each category is known, the domain reachabilities can be computed in a
single pass. Figure 5.9 gives the reachability for each domain in figure 5.7.

Now the information about each domain’s reachability can be used to optimize the
placement of the domain-level order constraints. For a constraint to be relevant to a given
domain, both of its components must be reachable in that domain. In Figure 5.7, the domain
declaration in rule (c) contains the constraint E � F, yet E and F are never simultaneously
reachable in that domain; as a result, that constraint is flagged as erroneous. At the same
time, global constraints and mixed token–description constraints are moved to the active
constraint list on each relevant domain and to the dormant list on each other domain. The
final compiled grammar, showing only active constraints in each domain, is given in figure
5.10.

5.2.2.5 Parser Agenda

The parser is controlled by an agenda: a queue of parsing tasks (for instance, predict from
edge X, or complete edges Y and Z). Each prediction/completion step can add any number
of tasks to the agenda as follows:

• When an active edge is added to the chart, it is scheduled for prediction and for
completion with each passive edge providing its active category.

• When an active edge formed by prediction is blocked from the chart, its parent is
scheduled for completion with all the children in the backpointer class of the edge
that blocked it.

• When a passive edge formed by completion is added to the chart, it is scheduled to
complete with each parent in its backpointer class.

54

a) {{A}} × reach(A) = {{A, B, C}}
b) {{C}} × reach(C) = {{C, E, F, G, J}, {C, E, H, I, J}}
c) {{D, F}} × reach(D) × reach(F) = {{D, F}}
f) {{F, C}} × reach(C) × reach(F) = {{C, E, F, G, J}, {C, E, F, H, I, J}}

Figure 5.9: Domain Reachability

a) start(A) ; B < C
b) A→ B, C ; 〈{2}, [F < G], C〉
c) C→ D, E, F ; 〈{1, 3}, [D < F], J〉
d) E→ F, G ; 1 < 2
e) E→ H, I
f) F→ F, C ; E � 1, 〈{1, 2}, [F < I, F < G], F〉

Figure 5.10: Compiled Grammar

• When an active or passive edge formed by completion is blocked from the chart, trig-
gering a class merger (see section 5.2.1.6), the new edges on each side are scheduled
for completion.

Initially, the chart is seeded with passive edges corresponding to each word in the input.
The parser then jumpstarts the agenda by predicting an isolated instance of the start symbol
covering the entire input. Once the agenda is empty, the parser will examine the chart for
successful edges.

5.2.2.6 Prediction

Recall that prediction takes an active edge seeking its active category and produces a new
edge that will provide that category if successfully completed. The parser considers each
rule in the grammar that provides the symbol being predicted, and for each rule, it generates
the masks for the new edge, taking both rule-based and domain-based order constraints into
account (as described in the following section).

Once the new masks have been calculated, the parser ensures that an edge is only
entered into the chart if the n-mask has enough space for the rule being considered: that is,
the number of inactive positions in the n-mask cannot be smaller than the minimum yield
of the rule (as calculated during grammar compilation).

If this check passes, the parser will attempt to add the newly-predicted edge to the chart
with an empty coverage vector. Whether this attempt succeeds or fails will determine the
parsing tasks added to the agenda, as described in section 5.2.2.5.

5.2.2.7 Mask Computation

The new edge’s n-mask is initially set to the n-mask of the triggering edge. If the triggering
edge has a singleton RHS (indicating that the edge being predicted must lead to a final
completion of the trigger), then the new edge’s p-mask is set to the p-mask of the trigger,
minus the trigger’s coverage. That is, any position that the trigger must cover but has not
yet done so must be covered by this new edge. For example, if an active edge with a
singleton RHS has a p-mask of 00111 and covers 00110, the edge being predicted must at
least cover 00001. If the trigger has a non-singleton RHS, then the p-mask is initialized to
zero.

55

The parser then examines each LP constraint in turn for references to the category cur-
rently being predicted. Each reference provides a component of the final mask, as indicated
in figure 5.11.

Here, Cat refers to the category being predicted (in the form of either a description or
a token), and Loc refers to the location of an already-located category. (Thus constraints
that do not mention the category being predicted and constraints that do not refer to any
already-located categories are irrelevant for prediction.)

In addition to these LP constraint patterns, the parser can also generate mask com-
ponents based on domain declarations that only need one more category to be complete
(singleton domain declarations). Since a domain declaration must dominate a contiguous
sequence of positions in the input, the last-located category must fill any gaps in the cur-
rent coverage of such a statement. These gaps are therefore activated in the corresponding
p-mask component. For instance, if a domain declaration 〈{3}, , J〉 covering 01010 is on
an edge from which the category with token 3 is being predicted, the component 00100
should be added to the p-mask.

Each constraint in turn is checked to see which (if any) of these patterns it matches,
and the relevant mask components are calculated. At the end, all n-mask components
are combined with the initial n-mask, and all p-mask components with the initial p-mask:
these are the new masks. As long as the masks do not overlap (reflecting contradictory
requirements), the edge will be proposed for addition to the chart.

For example, if the parser is predicting verb as token 2, it would respond to some
sample constraints as shown in figure 5.12. For the first constraint, the parser sees that
categories matching the description verb must follow the position 00010, generating the
negative mask component 00011. The second constraint doesn’t contribute anything, as it
does not refer to any as-yet determined locations. The third constraint requires category
number 2 to immediately precede the position 01000. This generates both a negative mask
component (11000), which encodes the fact that the category cannot follow the position
given, and a positive mask component (00100), which encodes the fact that the category
must include the third position.

5.2.2.8 Completion

Recall that completion is the process of combining a compatible pair of active and passive
edges to produce a new edge. The parser considers each edge compatible with the edge
that triggered completion. For each such edge, the parser constructs the LP statements
for the new edge (as described in the following section), the new n-mask, and the new
coverage vector. If this was a final completion (the resulting edge is passive), the parser
must additionally check to see that the p-mask was respected. Edges are indexed by their
active element, so the parser can efficiently retrieve only those edges which are likely to
yield successful completions.

5.2.2.9 Order Constraint Updating

For each edge retrieved, the parser must update the word order constraints of the active edge
with the coverage of the passive edge. As edges are initially constructed from grammar
rules, all order constraints are initially expressed in terms of either categories or tokens.
(In this chapter, constraints stated entirely in terms of tokens will be referred to as token-
based, while all others will be referred to as description-based.) As the parse proceeds,
these constraints are updated in terms of the actual locations where matching constituents
have been found. For example, a constraint like 1 < 2 (where 1 and 2 are tokens) can be
updated with the information that the constituent corresponding to token 1 has been found
as the first word, i.e. as position 00001.

56

n-mask component p-mask component
Cat < Loc suffix(lbound(C))
Loc < Cat prefix(rbound(C))
Cat � Loc suffix(lbound(C)) singleton(lbound(C) - 1)
Loc � Cat prefix(rbound(C)) singleton(rbound(C) + 1)

Figure 5.11: Mask Computation

n-mask component p-mask component
00010 < verb 00011
3 < verb
2 � 01000 11000 00100
result 11011 00100

Figure 5.12: Mask Computation Example

5.2.2.10 Activating dormant constraints

Before this can be done, however, the parser must first check to see if any dormant con-
straints on the passive edge need to be activated, based on the active edge’s domain. The
first step of this process is to find the domain that the passive edge is being completed into.
If the active element of the active edge is referred to in a domain declaration, then that
domain is the relevant one. Otherwise, the passive edge is assumed to be completed into
the active edge’s own domain. Once the relevant domain has been determined, the con-
straints for that domain will be either active or dormant on the passive edge. If dormant,
they must be merged with the active edge’s active constraints; all other dormant constraints
on the passive edge are merged with the active edge’s dormant constraints. The procedure
for merging constraints will be discussed below.

5.2.2.11 Updating token-based constraints

Each update step will take one of the following forms:

• The first time one of the categories mentioned in a precedence constraint has been
found, the constraint is updated as above and tested to see whether there is enough
space for the other category. For example, if, given the constraint 1 � 2, constituent
2 is found as the first word of the string, the constraint will be impossible to fulfill.

• When the remaining category of a precedence constraint is found, the parser checks
that the constraint actually holds; if it does, then that constraint will not appear as part
of the word order constraint set of the resulting edge. If the constraint is discovered
to have been violated, the completion step aborts and no edge is added to the chart.

5.2.2.12 Updating and merging description-based constraints

With description-based constraints, weak and immediate precedence constraints must be
handled separately.

In a weak precedence constraint, the parser need only keep track of the most extreme
matching cases (the left and right frontiers), if any. For example, the constraint NP < VP
needs to keep track of the rightmost NP and the leftmost VP seen in the domain so far. As
long as the rightmost NP remains to the left of the leftmost VP, the constraint will never
cause completion to fail. Similarly, when merging two weak precedence constraints, the
most extreme version of each frontier is kept.

57

Immediate precedence constraints, on the other hand, need only keep track of whether
zero, one, or many of each part of the constraint has been seen. The possibilities are
illustrated in figure 5.13. Here, the rows represent the status of the lefthand side of the
constraint, and the columns represent the status of the righthand side; the cells then encode
whether that particular status indicates a constraint violation. For instance, if the parser
knows that NP � VP in this domain, it is acceptable for there to be several VPs, as long as
no NPs are present (since, by definition, a category cannot immediately precede multiple
locations).

To summarize, immediate precedence constraint violations can be detected by keeping
count of the occurences of each side of the constraint; the one exception is the situation
represented by the center cell, where each side has been observed once. In this case, the
parser must check whether the locations are properly adjacent.

The corresponding chart for merging two count values, given in figure 5.14, is straight-
forward.

A complication arises when a category matches both halves of a precedence constraint
– if both halves are updated, the constraint will appear to have been violated, since no
position precedes itself. Thus weak precedence constraints5 must actually maintain a third
frontier in addition to the left and right frontiers to be updated in such circumstances. Any
subsequent update to any of the three frontiers is considered a constraint violation when
the third frontier is non-empty.

5.2.2.13 Completion – Final Steps

Once the word order constraints have been successfully updated, the rest of the new edge
is easy to compute: the category of the edge is the category of the active edge, the missing
righthand side is the tail of the active edge’s righthand side, and the coverage vector is the
bitwise or of the two edges’ coverage vectors. Finally, if this was a final completion (that
is, the edge being created is passive), the parser checks to see if the p-mask was respected:
in other words, every active bit in the p-mask must be active in the new coverage vector.
The resulting edge is then added to the chart and itself triggers another round of completion
and prediction.

5.3 Sample Parses

Having described the parsing algorithm in general, the paper will now present some con-
crete examples illustrating the parser’s actions on a specific grammar and input sentence.

5.3.1 Relatively-free Word Order

This sample parse uses the toy Sanskrit-inspired grammar in (82) and the sentence in (83).6

(82) a) start(s).
b) s→ conj, [s], [s] ; 2 � 1, 1 � 3
c) s→ verb, nom ; 2 < 1
d) s→ verb, nom, acc ; 2 < 1, 3 < 1
e) acc→ adj, acc
f) nom→ �������	� ‘Nala’ (a proper name)
g) acc→ ���
����
	� ‘city’

5Since, as mentioned in section 4.1.5 there is no semantic difference between A < A and A � A, the grammar
compiler converts all instances of the latter into the former.

6The example has been tokenized from ��������	��
� ���
���� ������
��������	������� ���
���� ����������.

58

B
A � B Zero One Many

Zero OK OK OK
A One OK OK if precedence is respected Failure

Many OK Failure Failure

Figure 5.13: Immediate Precedence Frontier Updating

B
A + B Zero One Many

Zero Zero One Many
A One One Many Many

Many Many Many Many

Figure 5.14: Immediate Precedence Frontier Merging

h) verb→ ��
��������	� ‘went’
i) conj→ ���� ‘and’
j) verb→ ��������	� ‘spoke’
k) adj→ �������������
	� ‘shining’

(83) �������������
	�
shining

�������	�
Nala

���
����
	�
city

��
��������	�
went

����
and
�������	�
Nala

��������	�
spoke

‘Nala went to the shining city and Nala spoke’

The grammar can be summarized as follows: A sentence may consist of a verb and
either one or two arguments preceding it. A sentence may also consist of a conjunction
immediately between two (conjunct) sentences, each of which forms an isolated domain.
Finally, accusatives may be modified by an adjective which may occur anywhere in a sen-
tence, before or after the accusative it modifies. Note also that the example sentence con-
tains the discontinuous constituent �������������
	� ���
����
	� ‘shining city’.

In these parse traces, the first row contains the line number of the parsing step and a
brief description of the parser action. The second row then contains either the details of the
resulting edge (edge number, coverage vector, dotted rule, word order statements) or the
reason that no edge was created. Any inactive bit in the coverage vector that is active in the
n-mask is shown struck-through: 0. Inactive bits in the coverage vector that are active in
the p-mask are underlined: 0. Other edge components not relevant to the example are not
shown.

Before parsing, the parser seeds the passive chart with the lexical entries, each covering
a singleton vector.

Line 1: scan �������������
	� ⇒ p0: adj at 0000001
Line 2: scan �������	� ⇒ p1: nom at 0000010
Line 3: scan ���
����
	� ⇒ p2: acc at 0000100
Line 4: scan ��
��������	� ⇒ p3: verb at 0001000
Line 5: scan ���� ⇒ p4: conj at 0010000
Line 6: scan �������	� ⇒ p5: nom at 0100000
Line 7: scan ��������	� ⇒ p6: verb at 1000000

For instance, line 1 was created by scanning the input word �������������
	�. The resulting edge,
number p1, provides the category adj and covers the leftmost word of the input (0000001).

59

The active chart is seeded with an initial edge as well.

Edge a0: $→ s at 0000000
[1]:0000000→ s

Here, s is the start category of the grammar. The agenda is then jumpstarted by scheduling
prediction from this edge.

In this prediction step, each of the rules that can generate this symbol are considered in
turn. There are three: rules (82b), (82c), and (82d). Since a0 has active bits in its p-mask,
the prediction step must make sure that each rule has a maximum yield no less than the
number of active bits in the p-mask (or else the categories generated by that rule could not
hope to satisfy the p-mask). Here, rule (82c), which has a maximum yield of two, fails that
test; the other two rules generate a1 and a2, respectively.

Line 8: pred s in a0
Rule (82c) would generate too few categories.
Edge a1: s→ verb2, nom3, acc4 at 0000000

c3 < c2, c4 < c2
Edge a2: s→ conj2, s3, s4 at 0000000

c3 � c2, c2 � c4, [3]:0000000→ s, [4]:0000000→ s

All edges generated by prediction have an empty (all zeroes) coverage vector. Since the
trigger a0 has only one category on its RHS, its p-mask propagates to a1 and a2. As each
edge is entered into the chart, the parser schedules the prediction of that rule as well as
its completion with the edges that generate its active category. Here, a1 has the active
category verb, so it is scheduled to complete with p6 and p3. (Recall that the search for
compatible passive edges is done at this point so as to ensure that the edges found are older
than the current edge – subsequently-created passive edges will search for active edges to
complete with. If the parser waited until dequeueing this action from the agenda to search
for compatible edges, it might pick up edges that had already been scheduled to complete
with the active edge.) Edge a2 has active category conj and is scheduled to complete with
p4.

Prediction from a1 is vacuous, since no grammar rules provide verb. Thus the next task
dequeued from the parser’s agenda is to complete a1 with p6.

Line 9: comp a1 with p6
Edge a3: s→ nom3, acc4 at 1000000

c3 < 1000000, c4 < 1000000

The differences between this edge and a1 illustrate the process of completion: verb1 has
been removed from the list of daughters and the constraint c3 < c2 has been updated to
c2 < 1000000 (representing the fact that category 2 has been found at position 1000000).
The p-mask is unchanged from a1; completion never changes the p-mask. As before, this
edge is scheduled for prediction, and completion with p5 and p1, the edges that currently
provide nom.

The parser now completes a1 with p4, the other passive edge providing verb.

Line 10: comp a1 with p3
Edge a4: s→ nom3, acc4 at 0001000

c3 < 0001000, c4 < 0001000

The only difference here from a3 is in the position of the located constituent; this edge too
will be scheduled for prediction and completion with p5 and p1.

Prediction from a2 is also vacuous; the parser moves on to its next task: completing a2
with p4.

60

Line 11: comp a2 with p4
Edge a5: s→ s3, s4 at 0010000

c3 � 0010000, 0010000 � c4, [3]:0000000→ s, [4]:0000000→ s

As no passive edges currently provide s, this edge is only scheduled for prediction.
The next substantive tasks are the completion of a3 with p5 and p1.

Line 12: comp a3 with p5
Edge a6: s→ acc4 at 1100000

c4 < 1000000
Line 13: comp a3 with p1

Edge a7: s→ acc4 at 1000010
c4 < 1000000

As before, the located element is removed from the edge’s RHS. In addition, as the con-
straint c3 < 1000000 is updated (to 0100000 < 1000000 and 0000010 < 1000000), the
parser notes that the constraint is now complete (in the sense that no further information
can be received that would update it) and inviolate (as 0100000/0000010 really do precede
1000000). Each edge is then scheduled for prediction and completion with p2.

This process is then repeated with respect to a4.

Line 14: comp a4 with p5
Passive coverage 0100000 does not precede 0001000

Line 15: comp a4 with p1
Edge a8: s→ acc4 at 0001010

c4 < 0001000

According to our grammar, verbs are sentence-final. This prevents the nom in sixth position
from being a part of a sentence containing the verb in fourth position. The nom in second
position is acceptable, though, and edge a8 is formed. Like a6 and a7, it is scheduled for
prediction and completion with p2.

The parser has now reached the scheduled prediction of s from a5.

Line 16: pred s in a0
Edge a9: s→ verb2, nom3 at 0000000

c3 < c2
Edge a10: s→ verb2, nom3, acc4 at 0000000

c3 < c2, c4 < c2
Rule (82b) would generate too many categories.

Here, the parser is predicting the left-hand s generated by the conjunction rule. Since the
parser has already located the conjunction in fifth position, the fifth through seventh posi-
tions are masked out. This prevents prediction with rule (82b), which has a minimum yield
of five, more than could fit in the remaining space. The immediate precedence constraint
involving the left-hand s in a5 requires the fourth position to be covered.

The parser now turns its attention to the tasks generated by the creation of a6. First, the
parser predicts acc in a6.

Line 17: pred acc in a6
Edge a11: acc→ adj2, acc3 at 0000000
∅

This edge inherits its n-mask from a6’s coverage; it also gets its p-mask from the noncov-
ered portions of a6’s pmask.

The next task is completion with p2.

61

Line 18: comp a6 with p2
Proposed passive edge does not obey p-mask.

This completion would produce an edge with coverage 1100010, which does not obey a
p-mask of 1111111.

The tasks generated by the creation of a7 and a8 are handled in much the same way.

Line 19: pred acc in a7
Edge a12: acc→ adj2, acc3 at 0000000
∅

Line 20: comp a7 with p2
Proposed passive edge does not obey p-mask.

Line 21: pred acc in a8
Negative mask 1111010 overlaps positive mask 1110101.

Line 22: comp a8 with p2
Proposed passive edge does not obey p-mask.

Line 21 illustrates another aspect of the mask creation process. Sometimes, the require-
ments on an edge about to be created by prediction conflict. In this case, the edge’s p-mask
must include all non-covered bits of a8’s p-mask (since a8 has a singleton RHS), leading
to a p-mask of 1110101; in addition, the category in question is constrained to precede po-
sition four and cannot overlap with the positions of the already-located constituents, which
leads to its n-mask of 1111010. For the edge to be successfully completed, then, it would
have to simultaneously occupy and not occupy positions five, six, and seven; the edge is
therefore not created.

The parser continues in this fashion, and I will only comment on those parsing steps
exemplifying new aspects of the algorithm.

Line 23: comp a9 with p6
Passive coverage 1000000 overlaps with active n-mask 1110000

Line 24: comp a9 with p3
Edge a13: s→ nom3 at 0001000

c3 < 0001000
Line 25: comp a10 with p6

Passive coverage 1000000 overlaps with active n-mask 1110000
Line 26: comp a10 with p3

Edge a14: s→ nom3, acc4 at 0001000
c3 < 0001000, c4 < 0001000

Line 27: comp a11 with p0
Edge a15: acc→ acc3 at 0000001
∅

Line 28: comp a12 with p0
Edge a16: acc→ acc3 at 0000001
∅

Line 29: comp a13 with p5
Passive coverage 0010000 overlaps with active n-mask 1111000

Line 30: comp a13 with p1 ⇒ p7: s at 0001010

At this point, a new passive edge is created. It is scheduled to complete with each active
edge in its backpointer class; here, that is only a5.

Line 31: comp a14 with p5
Passive coverage 0010000 overlaps with active n-mask 1111000

62

Line 32: comp a14 with p1
Edge a17: s→ acc4 at 0001010

c4 < 0001000
Line 33: pred acc in a15

Edge a18: acc→ adj2, acc3 at 0000000
∅

Line 34: comp a15 with p2
Proposed passive edge does not obey p-mask.

Line 35: pred acc in a16
Edge a19: acc→ adj2, acc3 at 0000000
∅

Line 36: comp a16 with p2
Proposed passive edge does not obey p-mask.

Line 37: comp a5 with p7
Coverage vector 0001010 is not contiguous.

Edge a5 has a domain declaration for each of its s daughters; as a result, p7 is unsuitable
as a completion candidate for that edge.

Line 38: pred acc in a17
Edge a20: acc→ adj2, acc3 at 0000000
∅

Line 39: comp a17 with p2 ⇒ p8: s at 0001110
Line 40: comp a18 with p0

Passive coverage 0000001 overlaps with active n-mask 1100001.
Line 41: comp a19 with p0

Passive coverage 0000001 overlaps with active n-mask 1000011.
Line 42: comp a20 with p0

Edge a21: acc→ acc3 at 0000001
∅

Line 43: comp a5 with p8
Edge a22: s→ s4 at 0011110

0010000 � c4, [4]:0000000→ s
Line 44: pred acc in a21

Rule (82e) would generate too many categories.
Line 45: comp a21 with p2 ⇒ p9: acc at 0000101
Line 46: pred s in a22

Negative mask 0011111 overlaps positive mask 1100001.
Negative mask 0011111 overlaps positive mask 1100001.
Negative mask 0011111 overlaps positive mask 1100001.

Line 47: comp a22 with p8
Passive coverage 0001110 overlaps with active n-mask 0011110.

Line 48: comp a22 with p7
Passive coverage 0001010 overlaps with active n-mask 0011110.

Line 49: comp a17 with p9 ⇒ p10: s at 0001111
Line 50: comp a5 with p10

Edge a23: s→ s4 at 0011111
0010000 � c4, [4]:0000000→ s

Line 51: pred s in a23

63

Edge a24: s→ verb2, nom3 at 0000000
c3 < c2

Rule (82b) would generate too many categories.
Rule (82d) would generate too many categories.

Line 52: comp a23 with p8
Passive coverage 0001110 overlaps with active n-mask 0011111.

Line 53: comp a23 with p10
Passive coverage 0001111 overlaps with active n-mask 0011111.

Line 54: comp a23 with p7
Passive coverage 0001010 overlaps with active n-mask 0011111.

Line 55: comp a24 with p6
Edge a25: s→ nom3 at 1000000

c3 < 1000000
Line 56: comp a24 with p3

Passive coverage 0000100 overlaps with active n-mask 0011111.
Line 57: comp a25 with p5 ⇒ p11: s at 1100000
Line 58: comp a25 with p1

Passive coverage 0000010 overlaps with active n-mask 1011111.
Line 59: comp a23 with p11⇒ p12: s at 1111111
Line 60: comp a0 with p12 ⇒ p13: $ at 1111111

At this point, the agenda is empty. The parser looks for passive edges providing the $
category whose coverage extends over the entire string, and finds this in edge p13. As a
result, the parse is deemed successful.

5.3.2 Domains and Dormant Constraints

This sample parse uses the grammar in (84) and the input sentence fegefhi.

(84) a) root(a, [g � c, d < x]).
b) a→ b1, c2, g3 ; 1 < 2
c) b→ d1
d) c→ h1, d2, i3 ; ; 〈{2}, [e < f], d〉, 〈{1, 3}, [h < i], x〉
e) d→ e1, f2

This grammar has been written7 to exercise the domain-level constraint handling abil-
ities of the parser; it is a more complicated version of (73). Most importantly, the partial
compaction effected by the domain declaration in (84d) will require a constraint merger.
Here, domain constraints will be listed on a separate line; active domain constraints are
displayed in bold.

Line 1: scan f
⇒ p0: f at 0000001 g � c, d < x, e < f, h < i

Line 2: scan e
⇒ p1: e at 0000010 g � c, d < x, e < f, h < i

Line 3: scan g
⇒ p2: g at 0000100 g � c, d < x, e < f, h < i

Line 4: scan e

7It is not possible to construct a compact linguistically-reminiscent grammar that exercises the same features of
the parser in the same amount of space, and thus a non-linguistic grammar is used in this section.

64

⇒ p3: e at 0001000 g � c, d < x, e < f, h < i
Line 5: scan f

⇒ p4: f at 0010000 g � c, d < x, e < f, h < i
Line 6: scan h

⇒ p5: h at 0100000 g � c, d < x, e < f, h < i
Line 7: scan i

⇒ p6: i at 1000000 g � c, d < x, e < f, h < i

All edges must contain some set of domain constraints, but as lexical items never trigger
prediction steps, the choice of domain is irrelevant. As a result, lexical items are arbitrarily
assumed to be in the root domain.

The initial edge is as follows:

Edge a0: $→ a1 at 0000000
[1]:0000000→ a : g � c, d < x, e < f, h < i
g � c, d < x, e < f, h < i

Here, the third line displays the current state of the constraints within the root domain, while
the second line indicates the current state of the constraints with the subordinate domain
that will encompass the daughter category of this rule. (Recall that this separation is how
the principle of domain locality is enforced: as elements are found, only the constraints in
that domain within which the element is visible will be updated.)

The initial predictions are generated in much the same way as in the previous example.

Line 8: pred a in a0
Edge a1: a→ b2, c3, g4 at 0000000

c2 < c3
g � c, d < x, e < f, h < i

Line 9: pred b in a1
Edge a2: b→ d2 at 0000000
∅
g � c, d < x, e < f, h < i

Line 10: pred d in a2
Edge a3: d→ e2, f3 at 0000000
∅
g � c, d < x, e < f, h < i

Initially, a1 gets its domain constraints from the initial state of the domain declaration on
a0. Thereafter, since each prediction remains in the same domain, the constraints are passed
on.

Line 11: comp a3 with p3
Edge a4: d→ f3 at 0001000
∅
g � c, d < x, e:0001000 < f, h < i

Line 12: comp a3 with p1
Edge a5: d→ f3 at 0000010
∅
g � c, d < x, e:0000010 < f, h < i

Having located an e, the relevant dormant constraints on a4 and a5 are updated. This will
ensure that, if this edge or one of its descendants is later completed into the domain where
that constraint is relevant, the constraint can be properly evaluated.

65

Line 13: comp a4 with p4
⇒ p7: d at 0011000

g � c, d < x, e:0001000 < f:0010000, h < i
Line 14: comp a4 with p0

⇒ p8: d at 0001001
g � c, d < x, void, h < i

The contrast between p7 and p8 illustrates the impact of dormant constraints. On p7, the f
at a position that follows 0001000, and the constraint is represented. (In contrast to token-
based constraints, description-based constraints can never be removed from an edge, as
another category matching the description might yet be encountered.) On p8, however,
the f is found preceding 0001000, and the constraint is violated. This is not fatal, however,
since it is only a dormant constraint. (As the parse continues, notice that the void constraint
is propagated to descendent edge p12 and a7.)

Line 15: comp a5 with p4
⇒ p9: d at 0010010

g � c, d < x, e:0000010 < f:0010000, h < i
Line 16: comp a5 with p0

⇒ p10: d at 0000011
g � c, d < x, void, h < i

Line 17: comp a2 with p7
⇒ p11: b at 0011000

g � c, d:0011000 < x, e:0001000 < f:0010000, h < i
Line 18: comp a2 with p8

⇒ p12: b at 0001001
g � c, d:0001001 < x, void, h < i

Line 19: comp a2 with p9
⇒ p13: b at 0010010

g � c, d:0010010 < x, e:0000010 < f:0010000, h < i
Line 20: comp a2 with p10

⇒ p14: b at 0000011
g � c, d:0000011 < x, void, h < i

Line 21: comp a1 with p11
Edge a6: a→ c3, g4 at 0011000

0011000 < c3
g � c, d:0011000 < x, e:0001000 < f:0010000, h < i

Line 22: comp a1 with p12
Edge a7: a→ c3, g4 at 0001001

0001001 < c3
g � c, d:0001001 < x, void, h < i

Line 23: comp a1 with p13
Edge a8: a→ c3, g4 at 0010010

0010010 < c3
g � c, d:0010010 < x, e:0000010 < f:0010000, h < i

Line 24: comp a1 with p14
Edge a9: a→ c3, g4 at 0000011

0000011 < c3
g � c, d:0000011 < x, void, h < i

Line 25: pred c in a6

66

Rule (84d) would generate too many categories.
Line 26: pred c in a7

Rule (84d) would generate too many categories.
Line 27: pred c in a8

Rule (84d) would generate too many categories.
Line 28: pred c in a9

Edge a10: c→ h2, d3, i4 at 0000011
[3]:0000000→ d : g � c, d < x, e < f, h < i,
[2, 4]:0000000→ x : g � c, d < x, e < f, h < i
g � c, d:0000011 < x, void, h < i

Note that line 28 makes reference to all three domains in this grammar simultaneously. In
particular, note that the second domain will be recognized partially before and after the
first, since the parser is told to look for the daughters in the order h, d, and then i.

Line 29: comp a10 with p5
Edge a11: c→ d3, i4 at 0100000

[3]:0000000→ d : g � c, d < x, e < f, h < i,
[4]:0100000→ x : g � c, d < x, e < f, h:0100000 < i
g � c, d:0000011 < x, void, h < i

Here, since the h is included in the span of the second domain declaration, only the con-
straints in that domain are updated with the fact that an h was found at 0100000 – the other
two domains do not receive this information. The parser also updates the coverage of the
second domain declaration; this bitvector will have to have a contiguous set of active bits
once all categories in the statement’s span have been found.

Line 30: pred d in a11
Edge a12: d→ e2, f3 at 0000000
∅
g � c, d < x, e < f, h < i

Line 31: comp a11 with p8
Passive coverage 0001001 overlaps with active n-mask 0100011.

Line 32: comp a11 with p9
Passive coverage 0010010 overlaps with active n-mask 0100011.

Line 33: comp a11 with p10
Passive coverage 0000011 overlaps with active n-mask 0100011.

Line 34: comp a11 with p7
Edge a13: c→ i4 at 0111000

[4]:0100000→ x : g � c, d < x, e < f, h:0100000 < i
g � c, d:0011000 < x, void, h < i

In line 34, a d is found, completing one of the domains on this edge. The domain decla-
ration itself is removed from the edge, and the edge’s domain constraints are updated with
the fact that a d (the domain declaration’s result category) was found at location 0011000.
Since this is further to the right than the existing frontier of 0000011, the constraint is
updated accordingly.

Line 35: comp a12 with p3
Edge a14: d→ f3 at 0001000
∅
g � c, d < x, e:0001000 < f, h < i

67

Line 36: comp a12 with p1
Passive coverage 0000010 overlaps with active n-mask 0100011.

Line 37: comp a13 with p6
⇒ p15: c at 1111000

g � c, d:0011000 < x:1100000, void, h < i
Line 38: comp a14 with p4

⇒ p16: d at 0011000
g � c, d < x, e:0001000 < f:0010000, h < i

Line 39: comp a14 with p0
Passive coverage 0000001 overlaps with active n-mask 0101011.

Line 40: comp a9 with p15
Edge a15: a→ g4 at 1111011
∅
g � c:1111000, d:0011000 < x:1100000, void, h < i

Line 41: comp a11 with p16
Result blocked by edge a13.

Line 42: comp a15 with p2
⇒ p17: a at 1111111

g:0000100 � c:1111000, d:0011000 < x:1100000, void, h < i
Line 43: comp a0 with p17

⇒ p18: $ at 1111111
g � c, d < x, e < f, h < i

Here, edge p18 is the marker of success.

5.4 Conclusion

The parsing algorithm that has been presented in this section applies to GIDLP grammars
written to use atomic categories. When compared to a standard context-free Earley parser,
its key features are as follows:

• edge coverage representation is set-based, rather than interval-based
• the same data structure represents edge coverage as well as LP constraint state
• a single dot suffices even in the presence of discontinuous constituency
• dormant constraints can serve to model the effect of word order domains

The next chapter will turn to the issues brought up by adapting this algorithm to deal with
feature structure categories.

68

Chapter 6

Parsing GIDLP Grammars With Feature
Structure Categories

Having seen the operation of the atomic GIDLP parsing algorithm, this chapter turns to the
issues involved in moving to feature structure categories, which is needed to truly support
linearization-HPSG grammars. Fortunately, many researchers have worked on parsing with
feature structures in the context of unification-based parsing; this work will be discussed in
section 6.1. Similar work exists for the treatment of feature structure-based LP constraints
and non-local information flow, which has been studied in connection with direct ID/LP
parsing; this is discussed in section 6.2. Section 6.3 presents the algorithm that has been
developed for parsing GIDLP categories with feature structures, discussing the integration
of these existing technologies into the previous algorithm.

6.1 Unification-Based Parsing

It is initially helpful to review the basic framework that underlay much of the original work
on parsing with feature structure categories. Consider first the sample grammar (inspired
by Shieber (1985)) defined over untyped feature structures given in Figure 6.1.

Such a grammar has three parts:

1. A set of feature structures (here, Rule 1 and Rule 2) that form the rules of the gram-
mar, describing how the mother node of a local tree can be related to its daughters.
In particular, the X0 attribute’s value is the parent feature structure, corresponding to
the left-hand side of a CFG rule, and the remaining attributes’ values are the feature
structures for the daughters, corresponding in order to the right-side of a CFG rule.

2. A set of feature structures (here, Lexeme 1) representing lexical entries. These typi-
cally have one attribute whose value can be matched against the input (that is, some
sort of phonological or orthographical representation) and other attributes that de-
scribe the lexical item itself, depending on the intended use of the grammar and the
underlying linguistic theory.

3. A feature structure providing the start category (here, Start). This plays an analagous
role to the start symbol in a context-free grammar; it is a constraint on the root of the
parse tree.

Consider the tree given in Figure 6.2. Since the tree’s root is subsumed by the ‘Start’
feature structure, each local tree (seen as a single feature structure) is subsumed by a rule
in the grammar, and each leaf is subsumed by a lexical feature structure, the parse tree is a
valid parse of aaa.

69

Rule 1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

[
cat t
f 1

]

x1

[
cat t
f | f 1

]

x2
[
cat a

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rule 2 ⎡⎢⎢⎢⎢⎢⎣x0
[
cat t

]
x1
[
cat a

]
⎤⎥⎥⎥⎥⎥⎦

Lexeme 1
[
cat a
phon ‘a’

]
Start

[
cat t
f a

]

Figure 6.1: Example feature structure grammar

[
cat t
f 1 a

]

[
cat t
f | f 1 a

]

[
cat t
f | f | f 1 a

]

[
cat a
phon ‘a’

]

[
cat a
phon ‘a’

]

[
cat a
phon ‘a’

]

Figure 6.2: Parse tree for string aaa

Just as with ID/LP parsing (as discussed in section 2.1.3), one can talk about direct
or indirect unification-based parsing. Indirect unification-based parsing involves rewriting
or expanding the feature-structure grammar into another type of grammar (for instance, a
CFG), and then applying well-known parsing methods to that grammar. Direct unification-
based parsing, on the other hand, involves algorithms that work directly with feature struc-
tures.

Since a feature-structure grammar like that illustrated in Figure 6.1 can easily be seen
as an augmentation of a context-free grammar, much of the early work on direct feature
structure parsing focused on methods of converting context-free parsing algorithms into
feature structure parsing algorithms. One of the most obvious aspects of such a conversion
is the need to move from matching via symbol equality to matching via unifiability. The
predictor now looks for rules in the grammar whose left-hand symbol can unify with the
active category in the edge being predicted; and the completer looks for passive edges
whose left-hand categories can unify with the active category of the current edge.

6.1.1 Restriction

6.1.1.1 Restriction To Ensure Termination

In a standard context-free chart parser, the predictor uses an identity test to avoid adding
redundant edges to the chart. When an identical edge already exists in the chart, it does not
add that edge to the chart again. This is necessary to prevent loops in the prediction process,
which would otherwise cause the algorithm not to terminate on left-recursive grammars.
Following Pereira and Warren (1983), a feature-structure chart parser must test for sub-
sumption instead: a feature-structure predictor should not add an edge to the chart when a
subsuming feature-structure is already present in the chart.

It has also been assumed that a subsumption check is also needed during completion to
prevent redundant edges from being added to the chart. Erbach (1997) points out that this

70

is only the case if the grammar is capable of generating identical edges from distinct com-
pletion steps. In order for this to happen, the grammar must contain structural ambiguities,
or else it will be impossible for the completion step to yield a redundant edge. Additionally,
the grammar must not incorporate the parse tree into the general linguistic data structure
(as, for instance, HPSG’s DTRS feature does), or else the edges corresponding to each
possible structure of an ambiguous string will be distinct. If either of these conditions fails
to hold, the subsumption check can be dispensed with during completion.

Shieber (1985) shows, however, that a subsumption check during prediction is not
enough to guarantee termination when parsing with an infinite set of nonterminals (as can
arise with grammars involving first order terms or feature structures). Consider how the
parse tree in 6.2 could have been constructed. The most straightforward adaptation of Ear-
ley’s algorithm to feature structure parsing involves a prediction step as follows: Given an
edge with active category index i such that the value of xn is A, and a rule whose x0 value
is B, if the unification C = [xnA] � B exists, add C as a new edge to the chart. Thus, given
a start symbol of

[
cat t

]
, the initial prediction step yields (85).

(85)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

[
cat t
f 1

]

x1

[
cat t
f | f 1

]

x2
[
cat a

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Prediction (which unifies x1 of the triggering edge with x0 of the rule) now applies to this
edge to yield (86); and in turn (87).

(86)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

[
cat t
f | f 1

]

x1

[
cat t
f | f | f 1

]

x2
[
cat a

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(87)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

[
cat t
f | f | f 1

]

x1

[
cat t
f | f | f | f 1

]

x2
[
cat a

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

There is no point at which any of (85), (86), or (87) subsumes a previous edge, and it is
clear that this pattern will never terminate. To restore the termination property, Shieber
proposed that the prediction step be modified to use restriction.

Restriction involves a function (a restrictor) over feature structures. While a restrictor
could be stated generally – a limit on embedding, for instance, a restrictor is usually rep-
resented by a set of paths – series of features in the feature structure, written as a list of
attribute labels separated with vertical bars. This kind of restrictor, which must necessarily
be grammar-specific, takes an arbitrary feature structure as input and returns a restricted
feature structure (RFS) consisting of the restrictor’s paths and their values. In effect, the
RFS expresses a subset of constraints expressed by the original feature structure. Follow-
ing Harrison and Ellison (1992), such a restrictor is termed a positive restrictor, since it
specifies which paths to keep in the RFS. The set of paths could also be interpreted as enu-
merating those paths to remove in creating the RFS; this interpretation yields a negative
restrictor. For example, applying the restrictor in (88) to (89) in the positive sense yields
(90) and in the negative sense yields (91).

(88) 〈a|b, d|e|f, d|i|j|f〉

(89)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
[
b c
]

d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e 1
[
f
[
g h
]]

i
[
j 1
]

k l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(90)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a
[
b c
]

d

⎡⎢⎢⎢⎢⎢⎢⎣e
1
[
f g
]

i
[
j 1
]
⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

71

(91)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b

d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e f

i
[
j f
]

k l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Shieber then modifies prediction to use restriction as follows: As before, we are given
an edge with active category index i such that the value of xn is A and a rule whose x0 value
is B. Let A′ = A � R, where R is a restrictor. Then, if the unification C = [xnA′] � B exists,
add C as a new edge to the chart. Shieber observes that since there are a finite number of
RFSs, restriction has the effect of dividing the infinite feature structure space into a finite
number of equivalence classes. As a result, the prediction step will never loop indefinitely.
In the grammar given in Figure 6.1, for instance, the restrictor can only contain a finite
number of paths, and eventually the parse will reach a point where prediction yields an
edge already in the chart.

As Shieber points out, it should be kept in mind that the point of the prediction step
is to provide top-down guidance to the parse: restriction deletes some of that information
in order to guarantee termination. This never affects the correctness of the parse, since the
RFS is more general than the original feature structure. The key is then to find the combi-
nation of paths for a particular grammar that maximize the quality of top-down guidance
given while still ensuring termination.

6.1.1.2 Restriction as Optimization

Gerdemann (1991) expands the role of restriction in Earley-inspired feature structure pars-
ing by pointing out several additional aspects of the algorithm where restriction can aid
efficiency. In particular, it has often been observed (see, for example, Tomabechi 1995)
that more time is spent unifying feature structures than performing any other part of the
parse. Unification is, in a sense, used as both a boolean predicate (could these two feature
structures be descriptions of the same object?) and as a function (what is the most general
feature structure that describes such an object?); the latter’s domain is those pairs of feature
structures for whom the answer to the former was ’yes’. Gerdemann’s insight was that the
first question can often be answered by considering a restriction of each feature structure:
if the two RFSs are incompatible, then there’s no way that the full feature structures could
have been compatible.

As a result, Gerdemann modifies Shieber’s predictor to work as follows: a predictors
list is kept of all RFSs used at a given position for prediction. Then during prediction,
the active category’s RFS is checked to see if it is subsumed by anything on the list. If
so, the prediction step can immediately terminate – any edge generated by the subsumed
edge would necessarily be subsumed by the edges generated by the earlier prediction and
hence fail to be entered into the chart. For example, if the RFS

[
cat np

]
has been used for

prediction, there is no need to try to predict with the RFS
[
cat np
num sing

]
.

A second use of restriction to optimize the parsing process occurs as a part of the
completion step. In Shieber’s parsing algorithm, completion involves attempting to unify
the value of the x0 feature on the passive edge with the value of the active category feature
of each appropriate active edge. For Shieber, ‘appropriate’ means that the two edges are
adjacent. In practice, however, Gerdemann observes that completion of a given passive
edge only need be attempted with the active edges that are ancestors (in the sense of the
parser’s search space) of the passive edge, or those that could have been, were it not for the
subsumption test that prevents entry of redundant edges.

Gerdemann therefore adds a forward pointer and a backpointer to each edge: during
each prediction step, the RFS that triggered prediction is noted both on the newly-created
edge as the backpointer and on the triggering edge as the forward pointer. When an edge is

72

blocked from triggering prediction (as explained earlier in this section), the RFS from the
predictors list that was responsible for the blocking is stored as the forward pointer. Then
during completion, unification attempts can be further limited to those active edges whose
forward pointers match the backpointer of the passive edge.

6.1.1.3 Dangers of Improper Restriction

Harrison and Ellison (1992) show that with certain grammars, a poorly-chosen Shieber-
style restrictor will cause the parser to fail to terminate. They illustrate this with the gram-
mar in Figure 6.3 (by convention, the LHS of Rule 1 is the start symbol; note that Rule 3 is
an epsilon rule), which can recognize either of the strings a or b; the choice determines the
depth of the t recursion.

This is illustrated in Figure 6.4. Consider the case where a is being parsed. Rule 1 is
predicted, and the resulting edge is completed with Lexeme 1. Predicting the t from the
result of the completion will generate the edge (92) – in which the information about the
(finite) length of the g path has been lost, due to the effects of the restrictor.

(92)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x0

[
cat t
g | g 1

]

x1

[
cat t
g 1

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This edge then completes with the empty category admitted by Rule 3 to yield the edge
(93).

(93)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x0

[
cat t
g | g 1

]

x1

[
cat t
g 1 e

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This edge is passive, and can again be completed with (92) to yield (94); this process
repeats indefinitely.

(94)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

[
cat t
g | g 1

]

x1

⎡⎢⎢⎢⎢⎢⎣cat t

g 1
[
g e
]
⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Harrison and Ellison observe that this is not a fatal flaw with restriction in general
and merely indicates a need for caution in developing the restrictor for a given grammar.
Here, just changing the restrictor to include

〈
g|g|g
〉

will allow parses with this grammar to
terminate.

6.1.2 Quick Check Vectors

An idea similar to restriction is proposed by Malouf et al. (2000), who observe that no
formal requirements give the order in which the subunits of a feature structure should be
processed during unification. As a result, it makes sense to first check those arcs which are
statistically most likely to fail first, so that an unsuccessful unification can be detected as
quickly as possible. (This is the same insight that the GIDLP parsing algorithm applies to
the RHS order of an ID rule; see section 7.1.2.) Malouf et al. further point out that it is
possible to extract this statistical information from a suitably-instrumented parser. If one is

73

Rule 1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0
[
cat s

]
x1

[
cat a
g 1

]

x2

[
cat t
g 1

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rule 3 [
x0

[
cat t
g e

]] Lexeme 1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat a
g | g | g e
phon ‘a’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Rule 2 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x0

[
cat t
g | g 1

]

x1

[
cat t
g 1

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Restrictor 〈cat〉 Lexeme 2 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat a
g | g e
phon ‘b’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 6.3: Harrison and Ellison’s grammar

[
cat s

]

[
cat a
g | g | g e

]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat a
g | g | g e
phon ‘a’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
cat t
g | g | g e

]

[
cat t
g | g e

]

[
cat t
g e

]

[
cat s

]

[
cat a
g | g e

]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat a
g | g e
phon ‘b’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
cat t
g | g e

]

[
cat t
g e

]

(a) (b)

Figure 6.4: Parse trees for strings a and b

in possession of a suitably-broad testsuite for a grammar, one can have a parser record the
path at which unification failed during every step of the parse.

At the end of this process, the ideal unification order can be determined and potentially
built into the feature structure representation. As a less invasive alternative, the n most
common failing paths can be used to create a restrictor that only makes note of the types of
the nodes at the end of each of its paths (rather than the entire substructure at those points,
as a Shieber-style restrictor does). The resulting quick check vector can then be used as a
pre-unification filter just as a Shieber-style restrictor can.

6.2 Non-Local Information Flow

The initial work on combining feature structure-based formalisms with linear precedence
constraints was done by Seiffert (1987, 1991), who assumes a feature structure-based ID/LP
formalism. Seiffert identifies two main issues with the advent of linear precedence con-
straints over feature structures. The first is straightforward: if LP constraints are to be
checked as local trees are built, care must be taken to ensure that either the restrictor does
not strip away the information needed to test the LP constraints, or that LP constraints are
evaluated with respect to the unrestricted feature structures.

The second issue, dealing with the potential for non-local LP information flow, is best
illustrated with an example grammar given in Seiffert (1987), reproduced here in Figure
6.5. When parsing the string edfg, passive edges corresponding to the local trees in Figures
6.6a and 6.6b will be created for categories b and c, respectively. Neither of these trees
violates either LP constraint. When we complete these trees with the initial prediction, the
resulting top-most local tree similarly violates no LP constraint. Yet the entire edge (shown
in Figure 6.7) violates LP Constraint 1: in the local tree with mother category b, a daughter

74

with
[
f1 one

]
follows a sister with

[
f2 two

]
. From this, Seiffert concludes that in addition to

checking LP constraints as each local tree is completed, each candidate parse tree must be
checked for LP acceptability after the chart is completed. Since this check involves testing
every LP constraint at every internal node of every possible parse tree, it is quite expensive.

Morawietz (1995), working with typed (as opposed to Seiffert’s untyped) unification
grammars, presents a refinement of this algorithm. He notes that the relationship between a
pair of categories and an LP constraint should be thought of as tripartite: if the category pair
is subsumed by the constraint, the constraint strongly applies. Otherwise, if the category
pair subsumes the constraint, the constraint weakly applies, and if not, the LP constraint
does not apply.

Thus at the point when a local tree like 6.6a is LP-tested, the parser notes that LP
Constraint 1 weakly applies to the daughter categories, and thus that constraint might be
violated with the addition of new information. LP Constraint 2 does not apply, and so no
amount of additional information will cause it to be violated.

As a result, when Morawietz’s algorithm encounters a tree for which an LP constraint
weakly applies, an entry is added to a constraint store for that edge: a list of constraints
whose applicability has not yet been determined. The first element of the entry is a pointer
to the feature structure for the current local tree; the second element is a copy of that feature
structure. When further completions are done with that edge and its descendants, the parser
checks to see if the two elements of each entry subsume each other; if they do, then no new
LP-relevant information has been provided. If they do not subsume each other, then the
constraint is re-tested for applicability; if the constraint is now violated, the completion
does not succeed. Thus at no point does the chart contain LP-unacceptable structures, as it
does under Seiffert’s approach.

6.3 The GIDLP Parsing Algorithm for Feature Structure Categories

Now that the relevant literature has been surveyed, the result of incorporating these tech-
nologies into the GIDLP parsing algorithm can be shown. While the core algorithm is
unchanged, as indicated in Figure 6.8, those sections with interesting differences will be
presented in the following sections.

6.3.1 Grammar Compilation

In general, there are not as many opportunities for optimizing the parse during grammar
compilation. On the one hand, categories are no longer simply equal or non-equal; they
instead fit into a subsumption hierarchy, making sets of such categories harder to work with.
Additionally, it is no longer always possible to determine useful reachability information.
Consider the rule in (95).

(95) VP→ V
[
subcat 1

]
, 1

In the presence of such a rule, the set of categories reached by VP cannot easily be deter-
mined – while V is often a lexical category in many grammars, it need not be. More criti-
cally, it may be the case that the elements of 1 may themselves be incompletely specified;
this is the case, for instance, with grammars that implement argument attraction (described
in section 2.3). Consider the lexical entry in (96), which yields (97) when unified into the
first category of (95)’s RHS.

(96) V
[
subcat

〈
V
[
subcat 1

]〉
⊕ 1
]

(97) VP→ V
[
subcat

〈
V
[
subcat 1

]〉
⊕ 1
]
, V
[
subcat 1

]
, 1

75

Rule 1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0
[
cat a

]
x1

[
cat b
f 1

]

x2

[
cat c
f 1

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

LP Constraint 1
[
f1 one

] ≺ [f2 two
]

Lexeme 1
[
cat d
phon ‘d’

]

Rule 2 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat b

f

[
f1 1
f2 2

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1

[
cat d
f1 1

]

x2

[
cat e
f2 2

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

LP Constraint 2
[
cat b

] ≺ [cat c
]

Lexeme 2
[
cat e
phon ‘e’

]

Rule 3 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat c

f

[
f1 1
f2 2

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1

[
cat f
f1 1

]

x2

[
cat g
f2 2

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lexeme 3 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat f
f1 one
phon ‘f’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Start
[
cat a

]
Lexeme 4 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cat g
f2 two
phon ‘g’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 6.5: Seiffert’s grammar

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat b

f

[
f1 1
f2 2

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat e
f2 2
phon ‘e’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat d
f1 1
phon ‘d’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat c

f

[
f1 1
f2 2

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat f
f1 1 one
phon ‘f’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat g
f2 2 two
phon ‘g’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a) (b)

Figure 6.6: Two passive edges created during parse of edfg

[
cat a

]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat b

f 3

[
f1 1

f2 2

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat e
f2 2 two
phon ‘e’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat d
f1 1 one
phon ‘d’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat c

f 3

[
f1 1

f2 2

]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat f
f1 1 one
phon ‘f’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cat g
f2 2 two
phon ‘g’

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 6.7: Result of completing passive edges in Figure 6.6 via rule 1

76

procedure earley:
compile the grammar (section 6.3.1)
initialize the chart and the agenda
while the action queue is non-empty
dequeue the top action and perform it

examine the chart for successful parses

procedure predict(A): (section 6.3.2)
foreach grammar rule providing A’s active category
compute the masks for the new edge
evaluate the masks for edge viability
attempt to add the edge to the chart
enqueue prediction and completion with this edge

procedure complete(P, A): (section 6.3.3)
check that A and P do not overlap
update the LP constraints and domain declarations on the edge
attempt to add the new edge to the chart
enqueue prediction and completion with this edge

Figure 6.8: GIDLP Parsing Algorithm

More complicated cases (in this example, longer chains of modals) may require more than
two levels of indirection, and in general, there is no theoretical limit to the amount of indi-
rection involved. As a result, it could require an infinite amount of processing to determine
the set of categories provably reached by a certain category, and one would need to instead
approximate the reachability of that category – in the worst case, the category is just said
to reach �, the most general feature structure.

Grammar compilation therefore plays a much smaller role in the feature structure
GIDLP parser than in the atomic GIDLP parser. It will be left to future work to decide
whether further grammatical analysis could lead to more efficient parsing.

6.3.2 Prediction

During prediction, the parser examines each rule in the grammar and tests its restricted
LHS against the active category on the rule being predicted. The active category is then
unified with the rule’s LHS to form the feature structure for the new edge. If this succeeds,
then processing continues with mask generation and testing as for atomic categories.

6.3.3 Completion

During completion, the parser tests the active and passive categories for restricted compat-
ibility and then unifies the passive category into the active edge that triggered completion.
The result, if successful, proceeds schematically as for atomic categories, updating the LP
constraints on the active edge. The process of LP updating is complicated by two factors,
however: the potential for non-modular constraints and the need to implement a constraint
store akin to Morawietz’s (1995). These factors will be discussed in the next two sections.

77

6.3.3.1 Non-Modular LP Constraints

As has been mentioned, the conditions adopted by the GIDLP formalism under which an
LP constraint is considered to be satisfied or violated were originally developed by Kasper
et al. (1995). These conditions are inherently based on pairs of categories, largely due to
the potential for what will be termed non-modular constraints. A non-modular constraint
is any constraint for which there exists a node n in the constraint’s feature structure such
that paths starting from the LHS feature and the RHS feature both reach n. Each such n
is referred to as a point of non-modularity. For example, (98) is a non-modular constraint,
since the node representing the LHS of the constraint can also be reached from the RHS
node after traversing the subcat arc.

(98) 1 <
[
subcat 1

]

The applicability of such constraints cannot be determined by knowing whether a category
is subsumed by either side of the constraint; instead, constraint applicability must be de-
termined by a pair-wise test. This presents a complication for parsing, in which categories
are only located one at a time.

As an example, consider the rule in (99) as it parses (100).

(99) A→ B1 B2 B3 B4 ;
[
x 1
]
<
[
y 1
]

(100) B
[
x +
]
B
[
y +
]
B
[
x -
]
B
[
y -
]

When the first category is located, the parser will recognize that the constraint applies, as
the constraint’s LHS subsumes the category. Under the constraint update strategy outlined
in section 5.2.2.12, the parser would update the left frontier of the constraint and move on.
On locating the second category, the right frontier (as only the constraint’s RHS subsumes
the category) would be correspondingly updated and the parser would confirm that the left
frontier still preceded the right. Next, the third category is located, and since it is subsumed
by the constraint’s LHS, the left frontier will be updated. At this point, the constraint’s left
frontier has passed its right frontier, and a constraint violation would be signified. This is
clearly not the intent of the constraint.

Instead, when updating any non-modular constraint, a new constraint must be generated
whose feature structure has become minimally more specific. In particular, for each point
of non-modularity on the side of the constraint that the triggering category could unify with,
the value of the triggering category at that point is unified into that side of the constraint.
For instance, the point of non-modularity in (99) is accessed through the path x on the left,
and y on the right. If this constraint were to be updated with the location of a category
C found to subsume the LHS of the constraint, the new constraint would be formed by
unifying C’s value for x with the LHS of the constraint.

It is then only in this new constraint that the appropriate frontier is updated. Then, if
the resulting constraint is subsumed by any other constraint in the list, it is merged with
that constraint. Under this strategy, (100) would be parsed as sketched in (101) – (105).

(101) A→ • B1 B2 B3 B4 ;[
x 1
]
: 0000 <

[
y 1
]
: 0000

(102) A→ B
[
x +
]• B2 B3 B4 ;[

x 1
]
: 0000 <

[
y 1
]
: 0000,

[
x 1 +

]
: 0001 <

[
y 1
]
: 0000

(103) A→ B
[
x +
]
B
[
y +
]• B3 B4 ;[

x 1
]
: 0000 <

[
y 1
]
: 0000,

[
x 1 +

]
: 0001 <

[
y 1
]
: 0010

78

(104) A→ B
[
x +
]
B
[
y +
]
B
[
x -
]• B4 ;[

x 1
]
: 0000 <

[
y 1
]
: 0000,

[
x 1 +

]
: 0001 <

[
y 1
]
: 0010,

[
x 1 -

]
: 0100 <

[
y 1
]
: 0000

(105) A→ B
[
x +
]
B
[
y +
]
B
[
x -
]
B
[
y -
]• ;[

x 1
]
: 0000 <

[
y 1
]
: 0000,

[
x 1 +

]
: 0001 <

[
y 1
]
: 0010,

[
x 1 -

]
: 0100 <

[
y 1
]
: 1000

The initial setup in (101) is as above. Now, when the first category is seen to be subsumed
by the constraint’s LHS, the constraint itself is not updated; instead, a new constraint is
added to the resulting edge, shown in (102). The second category is then located, and the
new constraint is updated on its right frontier. At the same time, a third constraint is gener-
ated, representing the result of unifying the category with the right-hand side of the original
constraint; this third constraint turns out to be identical to the second constraint, and so the
two are merged, resulting in (103). This process continues through the remaining two
categories in edges (104)–(105), where the third category no longer triggers a constraint
violation, as it is not subsumed by the second constraint.

6.3.3.2 Constraint Stores

Morawietz’s (1995) original constraint store is implemented by adding a pointer to and a
copy of an edge’s feature structure when an LP constraint is found to weakly apply to that
edge. Whenever the pointed-to feature structure is found to differ from the copy, the edge
is re-tested for acceptability with respect to the weakly-applying constraint.

The GIDLP parsing algorithm incorporates a refinement of this idea. Instead of storing
two copies of the edge’s feature structure, the parser marks the appropriate category of
the edge’s feature structure as watched and makes note of the triggering constraint in the
constraint store. In any parsing step thereafter, if any aspect of a watched feature structure
changes, the edge is re-tested for acceptability. As a result, the constraint store requires
much less space on each edge. (Note also that, as will be discussed in section 7.2, adding
the concept of watched nodes to the unifier adds almost no complexity, since very similar
functionality is already present.)

Just as an LP constraint may weakly apply, so can a description-based domain dec-
laration. As a result, the GIDLP constraint store can deal with weakly-applying domain
declarations as well. When such is encountered, two edges are added to the chart: a ‘true
edge’ where the domain declaration is assumed to apply, and a ‘false edge’ where it is as-
sumed not to apply. Throughout the rest of the parse, the parser will check to see that these
assumptions are maintained. Specifically, at each following step, if the relevant edge’s fea-
ture structure changes, it will be examined to see if the declaration now strongly applies.
If so, on the descendent of a ‘true edge’, the entry will be removed from the new edge’s
constraint store; on a ‘false edge’, the edge will fail. Similarly, no passive edge will be
allowed to provide the start category of the grammar if its constraint store still contains a
‘true’ entry is still present at the end of the parse (i.e. on an edge whose result category is
dollar), the edge will fail.

6.4 Conclusion

With the changes discussed in this section, the parsing algorithm can now handle fea-
ture structure categories as well as atomic categories, making it suitable for processing
linearization-HPSG grammars. The next chapter will turn to the evaluation of the parser.

79

Chapter 7

Evaluation

In general, a new parsing algorithm should contribute to the state of the art in either (or
both) of two ways: it allows grammars to express concepts more transparently, or it is more
efficient than previous approaches. It has been shown in chapter 3 that no other formalism
allows linearization-HPSG-based grammars to be transparently encoded; the latter quality,
however, has yet to be evaluated. This section will first discuss what is expected of the
GIDLP formalism in terms of efficiency and then turn to the evaluation itself.

7.1 Linguistic Expectations

Before presenting specific data on the efficiency of the parser, it is worthwhile to examine
the expectations that exist for the GIDLP parser based on previous research.

7.1.1 Discontinuous Constituency as Grammar Optimization

Müller (2004) examines a series of analyses that have been offered for various phenom-
ena in German and concludes that discontinuous constituents are often preferable on the
grounds of linguistic elegance and computational efficiency. Most prominent is the discus-
sion of the position of the finite verb. As has been shown earlier in section 6.3.1, when a
verbal complex is present in a verb-initial or verb-second sentence, that complex is sepa-
rated from the finite verb even though it determines the finite verb’s arguments. Thus any
system that can only handle continuous constituents will often be searching blindly for ver-
bal arguments, since the verb and the verbal complex cannot form a continuous constituent.
Müller goes on to show that phenomena such as extraposition and free middle-field con-
stituent order create additional inefficiencies for continuous constituent grammars.

Müller confirms this with data comparing two broad-scale grammars of German, one
that allows discontinuous consitutents, and one that does not. Müller observes that the
grammar with discontinuous constituents creates far fewer1 passive edges during parsing
than does the continuous constituent grammar.

As a result, the GIDLP formalism should be expected to generalize this result: the
formalism should be able to provide a discontinuous-constituent grammar for a language
with relatively free word order that outperforms any phrase-structure grammar for that
same language.

1Müller presents a graph of edges created versus sentence length, but no specific figures.

80

7.1.2 The Value of RHS Ordering

Recall that one of the major innovations of the GIDLP grammar format defined in section
4.1 over previous discontinuous constituent formalisms is that the order of the RHS of a
grammar rule does not encode the terminal order of the daughters. Instead, it expresses the
order in which the parser will search for these elements, as discussed in section 5.2.1.2.

To see why this is valuable, consider a grammar covering raising verbs in Icelandic.
Many verbs in Icelandic assign “quirky case” (i.e. a non-nominative case) to their subjects;
these case assignments persist when the subject is raised to be the subject or object of a
matrix verb. From a parsing perspective, the embedded verb must be known before it can
be determined whether a given noun phrase is an acceptable subject for the matrix verb.
This is illustrated by the data in (106) – (111).

(106) Hana
her.acc

virðist
seems

vanta
to-lack

peninga
money

‘She seems to lack money.’

(107) Barninu
the-child.dat

virðist
seems

hafa
to-have

batnað
recovered-from

veikin
the-disease

‘The child seems to have recovered from the disease.’

(108) Verkjanna
the-pains.gen

virðist
seem

ekki
not

gæta
to-be-noticeable

‘The pains don’t seem to be noticeable.’

(109) Hann
he.nom

telur
believes

mig
me.acc

vanta
to-lack

peninga
money

‘He believes that I lack money.’

(110) Hann
he

telur
believes

barninu
the-child.dat

hafa
to-have

batnað
recovered-from

veikin
the-disease

‘He believes the child to have recovered from the disease.’

(111) Hann
he

telur
believes

verkjanna
the-pains.gen

ekki
not

gæta
to-be-noticeable

‘He believes the pains to be not noticeable.’

In other words, the fact that the subject in (106) and (109) is accusative is a reflection
of the embedded verb ‘lack’ rather than the matrix verbs ‘seem’ or ‘believe’; the same
situation holds for the dative [(107), (110)] and genitive [(108), (111)] examples. In all
other respects, however, the matrix verb is still the head of its clause (it must agree in
number with the subject, for example).

Consider a head-driven parser (van Noord 1997): a variant of a phrase-structure parser
in which a designated element (the head) is parsed before any other complement; the non-
head daughters are then parsed in the usual left-to-right order. With such a parser, the
grammar writer would write a rule like (112) to license the matrix clause.

(112) S→ NPsubj Vhead VPinf

With this rule, the parser will first locate the head (here, the V), then the NP, and finally
the VP. As a consequence, the constraints in the VP on the case of the subject will not be
known until after the subject has been found. The parser will therefore try all possible NPs
as subjects, and then see which the embedded verb phrase rejects.

81

With the GIDLP formalism, in contrast, the grammar writer could specify the rule as
(113) to avoid this generate-and-test pattern.

(113) S→ V1 VP2
inf , NP3

subj

Now the parser will not look for the subject of the clause until the embedded verb phrase
has been located, and so only NPs with the appropriate case will be considered.

7.1.3 Computational Complexity

The computational complexity of the GIDLP formalism itself has not been investigated.
Such results do exist, however, for Suhre’s LSL grammar formalism, which is a subset of
the GIDLP formalism. As a result, the GIDLP formalism can be no less complex than the
LSL formalism. Suhre’s (1999) central finding is that the membership problem for his LSL
grammar formalism is NP-complete, both when considering the grammar plus the string as
input (general membership problem) as well as when only the string is considered as input
(fixed membership problem).

As Huynh (1983) has shown, the general membership problem for unordered context-
free grammars (ID/LP grammars without LP statements) is also NP-complete, so Suhre’s
first result is not surprising. That the fixed membership problem for LSL grammars is
also NP-complete is less straightforward; Suhre (1999, 61ff) demonstrates that it stems
from the potential for recursive growth of discontinuities. As a result, when the parser can
assume an upper bound on the number of discontinuities in any given constituent, the fixed
membership problem becomes polynomial. Formally, this can be achieved by requiring
that the number of discontinuities introduced by a recursive non-terminal is bounded by
some constant.

Interestingly, a related practical proposal based on linguistic argumentation is discussed
by Müller (1999b). He proposes a continuity constraint for linearization-based HPSG
which requires saturated phrasal elements (that is, maximal projections) to be continuous.2

Müller shows that adding his continuity constraint results in a significant reduction in the
number of passive edges and thereby significant improvements in parsing performance.

This continuity constraint is weaker than Suhre’s condition in that recursion on the level
of adjunction is not restricted. It is, however, interesting to note in this context that a gram-
mar incorporating the X-schema (Jackendoff 1977) will require all non-head constituents
to be maximal projections. This result therefore ties in with Blevins’s (1990) (see section
2.1.3) suggestion that maximal projections should coincide with word order domains. In
sum, Müller’s result strongly suggests that further research on linguistically-motivated con-
tinuity constraints can result in efficient parsing of those GIDLP grammars which include
such constraints.

7.2 Implementation Notes

Both the atomic parsing algorithm of chapter 5 and the feature structure parsing algo-
rithm of chapter 6 have been implemented in C++. The feature structure parser incorpo-
rates the feature structure handling routines from pet (Callmeier 2001), which provides a
state-of-the-art implementation of unification and subsumption for typed feature structures.
Throughout development, each parser was tested on the example grammars shown through-
out this thesis to ensure accurate implementation of the various aspects of the algorithm.

2If extraposition is handled via discontinuous constituents, a more complex constraint is required.

82

7.2.1 Performance on Suhre’s Grammars

A second check for accuracy arises through the nine grammars provided by Suhre (1999).
Each grammar consists the rule in (114) with differing LP and isolation constraints. The
grammars are summarized in (115). For instance, grammar #1 illustrates right isolation (in
which each RHS category is its own domain) and immediate precedence.

(114) A→ A, A

(115) no prec. weak prec. immed. prec. constraint(s)
no isol. #9 #8 #3
left isol. #5 #4 #2 〈{0}, A, []〉
right isol. #7 #6 #1 〈{1}, A, []〉, 〈{2}, A, []〉
constraint 1 < 2 1 � 2

Grammars 1, 2, 3, and 4 are effectively context-free grammars; grammar 9 is the fully
exponential case, where every subset of the input has a corresponding passive edge. The
remaining grammars occupy points between these two extremes.

Suhre (1999) reports the size of the final chart when each grammar is used to parse
sentences of the form an. For grammars 5, 7, and 9, the GIDLP parser achieves identical
chart size; for the remaining grammars, the GIDLP parser creates exactly twice as many
active edges. This is the result of the parser’s treatment of p-masks during prediction. Since
the sole rule of the grammar is recursive, it is initially predicted with a full positive mask
(see section 5.2.2.6) and then re-predicted with an empty positive mask (since daughter
edges do not get the positive mask of their mother during prediction). Since the parser lacks
retroactive ambiguity packing (see section 5.2.1.5), every subsequent completion occurs
with both a descendant of the first edge and a descendant of the second edge, leading to the
exact doubling of active edges.

As a result, since Suhre’s grammars illustrate the worst-case scenario for each com-
bination of grammar features, the identity or near-identity in chart size confirms that the
GIDLP is properly creating all necessary edges.

7.3 Efficiency

In the optimal case, the efficiency of the GIDLP parser would be tested by comparing two
grammars with identical coverage. One would be a GIDLP grammar; the other, a gram-
mar modelling discontinuous constituents with existing technology – a grammar for LKB
(Copestake 1992) or ALE (Haji-Abdolhosseini and Penn 2003), for instance. Differences
in execution time on a common testsuite between the two parsers could then be used to de-
termine the empirical effect of switching from order constraints expressed through general
constraint satisfaction and relations to order constraints used directly by the parser during
prediction and completion.

Unfortunately, grammars of the requisite scale that are documented well enough to be
quickly ported to a new system do not exist, and their development is a research project
in its own right. As an example, both the ERG grammar of English (Flickinger 2000) and
the JaCY grammar of Japanese (Siegel 2000) are still in active development despite having
been worked on by teams of researchers for nearly ten years. This section will therefore
concentrate on comparative results from smaller-scale grammars.

7.3.1 Performance on Context-free Grammars

The GIDLP grammars form a superset of the context-free grammars. Thus it would be
desirable for a GIDLP parser to be just as efficient as a context-free parser when presented

83

with a context-free grammar encoded in the GIDLP format, especially in light of Volk
(1996), which showed that in terms of efficiency and expressivity, it is advantageous to be
able to combine ID/LP and ordinary context-free rules in one grammar.

This raises the question of how the parsing algorithm proposed in this paper performs
when used to parse grammars that contain only context-free rules. To investigate this, the
parser’s performance has been tested with the three types of context-free grammars dis-
cussed in Earley (1970) – those that require linear, quadratic, and cubic time for strings to
be recognized; following Earley, the number of edge insertion attempts (whether successful
or unsuccessful) is used as a metric (represented as cost in the charts that follow).

Earley uses the context-free grammar in (116) (presented here with its GIDLP equiva-
lent) to test the linear and quadratic aspects of the algorithm.

(116) CFG GIDLP
root(X) root(X, [])
X→ A [X]→ A1
X→ X B [X]→ X1 B2 ; 1 � 2
X→ Y A [X]→ Y1 A2 ; 1 � 2
Y→ E [Y]→ E1
Y→ Y D Y [Y]→ Y1 D2 Y3 ; 1 � 2, 2 � 3

Consider the input string (ed)xeaby (where ax abbreviates x copies of a). With this gram-
mar, Earley reports that the number of edge insertion attempts for his algorithm increases
linearly with y and quadratically with x. This can be empirically verified by looking at the
ratio of additional cost (the total number of edge insertion attempts during parsing) to some
power of the increase in work (the difference in string length). If that ratio converges, then
it can be said that that power is an upper bound on the complexity of the task.

With the linear case, the ratio between additional cost and additional work should con-
verge. The results in (117) show that this is attained by the GIDLP parser.

(117) Input Cost Work ΔCost ΔWork ΔCost
ΔWork

ededeab 76 1 n/a n/a n/a
ededeab2 89 2 13 1 13
ededeab3 102 3 26 2 13
ededeab5 128 5 52 4 13
ededeab10 193 10 117 9 13

That the rightmost column converges illustrates the linear performance achieved by the
GIDLP parser on this grammar.

For the quadratic case, the ratio between additional cost and the square of additional
work should converge. The results in (118) show that this is not attained by the GIDLP
parser.

(118) Input Cost Work2 ΔCost Δ(Work2) ΔCost
ΔWork2

ΔCost
ΔWork3

(ed)2ea 61 4 n/a n/a n/a n/a
(ed)3ea 95 9 34 5 6.80 1.79
(ed)4ea 142 16 81 12 6.75 1.45
(ed)5ea 204 25 143 21 6.81 1.22
(ed)6ea 281 36 220 32 6.88 1.06

Since the sixth column does not converge, it cannot be the case that the GIDLP parser
operates on this aspect of the grammar in quadratic time; this performance goal has not yet

84

been met. From the fact that the rightmost column converges, however, it can be seen that
the performance is no worse than cubic.

Earley’s sample cubic-time CFG is given in (119). The corresponding results are given
in (120).

(119) B→ B B
B→ A

(120) Input Cost Work3 ΔCost Δ(Work3) ΔCost
ΔWork3

A5 68 125 n/a n/a n/a
A6 104 216 36 91 0.40
A7 153 343 85 218 0.39
A8 213 512 145 387 0.37
A10 378 1000 310 875 0.35

Since the right-hand column converges, the parser can be seen to have attained the goal of
cubic time on this grammar.

In summary, the GIDLP parser achieves performance comparable to that of a CFG
parser when asked to parse a context-free grammar encoded in the GIDLP format for most
types of context-free grammars. In all cases, the GIDLP grammar parses GIDLP-encoded
CFGs in no worse than cubic time.

7.3.2 Larger-scale Grammar Evaluation

To test the effectiveness of the GIDLP formalism, a moderate-scale grammar of German
was obtained from Professor Martin Volk (Stockholm University). This grammar combines
ID/LP rules with PS rules, as argued for in (Volk 1996); it contains rules for most of the
basic clause structure of German, but lacks provisions for truly non-local phenomena. As
each ID/LP rule necessarily encodes its own domain (see section 2.1.3), the flexibility of
the German middle-field is modelled by the use of a flat structure. As an example, the rule
for ditransitive verbs is given in (121).

(121) id(’Satz’(_),
[’N2’(numerus:N..kasus:’NOM’.. person:P),
’V’(numerus:N..person:P..subcat:’AD00’(_,_)..vform:fin),
’N2’(kasus:’DAT’),
’N2’(kasus:’AKK’),
stern(’ADV’(_)),
opt(’ERG’(_)),
opt(’PRAEF’(_))]).

The rule requires a verb with the appropriate subcategorization class, the three verbal com-
plements, as well as an optional complement labelled ERG, an optional prefix (for sepa-
rable verbs), and any number of adverbs. A set of linear precedence constraints accounts
for the position of the finite verb (and prefix, if present) while allowing the arguments and
adverbs to occur in any order.

This grammar can be directly translated into GIDLP format, following several straight-
forward steps. Each of Volk’s PS rules corresponds to a GIDLP rule (as illustrated in
section 4.2.1), as does each of Volk’s ID rules. Since there is no difference in the resulting
notation between the rules that were originally PS or ID rules, each of Volk’s LP con-
straints must be stated as local constraints to each ID rule, or else they would apply to the
originally-PS rules as well. Second, since the GIDLP formalism lacks support for optional

85

and Kleene-starred categories, the rule must be split into several versions, one for each
combination of present and absent categories. Here, three optional categories will generate
eight rule versions, schematized in (122).

(122) Satz→ N2 V N2 N2 ADVSTAR ERG PRAEF
Satz→ N2 V N2 N2 ADVSTAR ERG
Satz→ N2 V N2 N2 ADVSTAR PRAEF
Satz→ N2 V N2 N2 ADVSTAR
Satz→ N2 V N2 N2 ERG PRAEF
Satz→ N2 V N2 N2 ERG
Satz→ N2 V N2 N2 PRAEF
Satz→ N2 V N2 N2

Finally, a category ADVSTAR must be introduced that dominates any number of ADVs
without forming a word order domain; this will allow the ADVs to be permuted among the
arguments for the rule.

This establishes an ‘initial’ grammar. To evaluate the empirical advantage of the GIDLP
formalism, the grammar was altered to take advantage of several of the GIDLP features.
The first revision concerned the ability to have word order domains larger than the local
tree. As noted above, each ID rule in Volk’s grammar had to be converted into multiple
GIDLP rules. As a result, the baseline grammar contains 371 rules, in contrast to the 121
rules (68 PS and 53 ID) in Volk’s grammar. This can be avoided in the GIDLP formalism
by creating rules of the form Satz → ADV Satz that do not form word order domains; in
addition, the LP constraints are moved from the various Satz rules to a new level of structure
(the category ‘clause’). Following this modification, the ‘medial’ grammar contains 143
rules. In effect, this ability to structurally recurse without creating additional word order
domains generalizes Volk’s use of Kleene star, which can only recurse on a single category
without creating structure.

A second optimization results from taking advatange of the GIDLP ability to freely
specify the RHS order of a rule. While it is not clear what principle underlay the orderings
present in Volk’s ID rules, it is clear that they are not optimal for GIDLP. Virtually all
sentence-level rules have a nominative NP as their first argument – the least discriminatory
argument of a German sentence. In the ‘final’ version of the grammar, the right-hand sides
were ordered to put the finite verb first, followed by the verbal complex (if any); the order
of the other arguments was left unchanged. It is clear that a more detailed analysis of each
rule could lead to further reorderings; nonetheless, the effect of a simple reordering on this
grammar can be taken as a lower bound on the potential for increased efficiency.

To compare these three grammars (the original, the first modified version with addi-
tional structure for optional arguments, and the second modified version with reordered
RHSs), a testsuite of 150 sentences was constructed. The sentences were generally chosen
to equally cover the sentence types recognized by the grammar. The results from parsing
this testsuite with each grammar are summarized in Figure 7.1, which shows the average
number of chart insertion attempts at each sentence length. (Chart insertion attempts have
traditionally been used as an overall metric for parsing efficiency, as parse time tends to
be dominated by the time taken searching the chart for blocking edges.) Overall, the final
grammar shows a clear improvement over the medial and initial grammars.

The raw data from this experiment is shown in Figure 7.2. All sentences in the test suite
were assigned a serial number in order of increasing sentence length, followed by increas-
ing chart insertion attempts on the initial grammar; this graph then shows the number of
chart insertion attempts for each of the 150 sentences, grouped by sentence length. As can
be seen, sentence length does not directly correlate with parsing complexity, as the lines do
drop at sentence length boundaries.

86

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 3 4 5 6 7 8 9 10 11

C
ha

rt
 S

iz
e

(e
dg

es
)

Sentence Length (words)

Initial
Medial

Final

Figure 7.1: Average Chart Size per Sentence Length

 0

 20000

 40000

 60000

 80000

 100000

 120000

3 4 5 6 7 8 9 10 11

C
ha

rt
 S

iz
e

(e
dg

es
)

Sentence Length (words)

Initial
Medial

Final

Figure 7.2: Chart Size per Sentence Length for Individual Sentences

87

Averaging over all 150 sentences, the final grammar sees a decrease of 69.2% in the
number of chart insertion attempts compared to the initial grammar. Thus the expressive
capabilities provided by the GIDLP formalism lead directly to improvements in parsing
efficiency.

7.4 Conclusion

The GIDLP formalism was designed to allow grammar writers to specify linearization-
HPSG grammars that can be efficiently processed. The results described in this section
show that the two main aspects of the GIDLP formalism – the ability to specify word
order domains larger than the local tree and to order the RHS according to discriminatory
capacity – provide clear enhancements in chart size and execution time when exploited.

88

Chapter 8

Conclusion

8.1 Future Work

Future work with the GIDLP formalism and parser centers around two goals: the goal to
verify the empirical worth of GIDLP, and the goal to improve the efficiency of the GIDLP
parser.

True comparisons of the parser, whether against other systems, or against other versions
of itself, can only be done in the context of a large-scale, broad-coverage grammar mak-
ing use of all of the GIDLP facilities. Such a grammar could be constructed in two ways:
by writing a GIDLP grammar from scratch, or by extracting a GIDLP grammar from an
already-existing resource – either an existing broad-coverage grammar for a different for-
malism or a suitably-encoded treebank.

With such a grammar in hand, not only could the parser be tested against other systems
– in the sense of the apples-to-apples comparison described in section 7.3 – but it could
also be tested against alternate implementations of the same algorithm.

For instance, as discussed in section 5.2.1.5, the GIDLP parser does not currently im-
plement retroactive ambiguity packing – the process of removing edges from the chart
whenever a more general edge is added, and updating all references to that old edge to
point to the new edge instead. It is clear that this process involves a tradeoff: the edge
insertion mechanism becomes more complex, as both the chart itself as well as the parsing
agenda would have to be examined for references to the old edge, but the overall chart size
would not grow as quickly, speeding up those aspects of the parser that retrieve edges from
the chart. By building a second implementation of the parser that performs retroactive am-
biguity packing and comparing its performance on a testsuite for a suitably broad-coverage
grammar, the empirical merit of this feature could be assessed.

Toward the second goal, this thesis has concentrated on those parsing optimizations
of particular importance to grammars recognizing discontinuous constituents. Further op-
timizations applicable to all parsing systems remain to be considered. For example, one
could store the grammar as a trie (Fredkin 1960) – a tree-like data structure originally
developed to store strings in such a way as to minimize the redundancy incurred by du-
plicating prefixes. In a trie, each internal node represents a common prefix shared by two
or more of the contained strings; each string has its own leaf node. In the context of a
grammar, each LHS category has an associated trie; Figure 8.1 illustrates the correspon-
dence between a CFG and its corresponding trie-encoded form. Here, each of the four rules
(i)–(iv) in the CFG corresponds to a leaf node in the trie encoding.

Encoding the grammar in this manner has the effect of collapsing many similar parse
edges into one edge. For instance, with the grammar in Figure 8.1a, once VP is predicted,
there will be three active edges awaiting a V, one for each of rules (ii)–(iv). Once a passive

89

i) S→ NP VP
ii) VP→ V

iii) VP→ V NP
iv) VP→ V NP NP

S: NP VP i

ii

VP: V NP iii

NP iv

(a) (b)

Figure 8.1: Storing Grammar in a Trie

edge providing V is found, all three will be completed with that edge to produce three new
edges, and so on. With the trie-encoded grammar, this repetitive work would only be done
once.

The completion process does become more complicated as a result – instead of the ‘dot’
moving serially from one position to the next, it will periodically need to split, following
all of the out-edges of a node simultaneously. As a result, the completion of two edges may
yield multiple result edges.

Adaptation of this concept to the GIDLP parser would be complex, as it would be
possible to have LP constraints and domain declarations only applying to certain paths
through the trie. The implementation would likely use a mechanism similar to that for
dormant constraints (section 5.2.1.4), with provisions for pruning constraints for paths-
not-taken. Empirical verification would be crucial to determining whether this proposed
optimization presents an overall improvement or not.

8.2 Conclusion

This thesis was initially motivated by the observation that discontinuous constituents, long
a part of syntactic theory and recently popularized in HPSG via work in linearization,
present a dilemma to linguists with an interest in grammar implementation. Should they
adopt discontinuous constituents for their theoretical elegance and suffer the price they
impose in terms of processing efficiency, or should they surrender elegance and adopt the
coerced system of continuous consitutents that current processing systems can handle?

The GIDLP formalism allows linguists to specify grammars with LP constraints oper-
ating within explicitly declared word order domains, and with ID rules in which the gram-
mar writer can order the RHS as to minimize the number of parsing hypotheses that must
ultimately be abandoned. With these two empirically-proven optimizations, the GIDLP
formalism is seen to resolve this dilemma, providing linguists with the tools they need to
efficiently work with discontinuous constituents in any language regardless of where it falls
on the word order continuum from completely-fixed to completely-free.

90

Bibliography

Bach, Emmon. 1983. On the relationship between word-grammar and phrase-grammar.
Natural Language and Linguistic Theory, 1.65–89.

Blevins, James. 1990. Syntactic Complexity: Evidence for Discontinuity and Multidomina-
tion. Ph.D. thesis, University of Massachusetts, Amherst, MA.

Bloomfield, Leonard. 1933. Language. New York: Henry Holt and Company.
Bonami, Olivier, Danièle Godard, and Jean-Marie Marandin. 1999. Constituency and

word order in French subject inversion. Gosse Bouma, Erhard W. Hinrichs, Geert-Jan M.
Kruijff, and Richard T. Oehrle, editors, Constraints and Resources in Natural Language
Syntax and Semantics, Studies in Constraint-Based Lexicalism, 21–40. Stanford, CA:
CSLI.

Bröker, Norbert. 1998. Separating surface order and syntactic relations in a dependency
grammar. Proceedings of the 17th International Conference on Computational Lin-
guistics (COLING) and the 36th Annual meeting of the Association for Computational
Linguistics (ACL), 174–180. Montreal. URL http://www.aclweb.org/anthology/
P98-1026.

Bunt, Harry. 1991. Parsing with discontinuous phrase structure grammar. Masaru Tomita,
editor, Current Issues in Parsing Technology, 49–64. Boston: Kluwer.

Bunt, Harry and K. van der Sloot. 1996. Parsing as dynamic interpretation of feature
structures. Harry Bunt and Masaru Tomita, editors, Recent Advances in Parsing Tech-
nology. Dordrecht: Kluwer Academic Publishers.

Bunt, Harry andArthur vanHorck, editors. 1996. Discontinuous Constituency, volume 6
of Natural Language Processing. Berlin and New York, NY: Mouton De Gruyter.

Callmeier, Ulrich. 2001. Efficient Parsing with Large-Scale Unification Grammars.
Diplomarbeit, Fachrichtung Informatik, Universität des Saarlandes. URL http://www.
coli.uni-sb.de/~uc/thesis/thesis.pdf.

Campbell-Kibler, Kathryn. 2002. Bech’s problem, again: Using linearization on Dutch
R-pronouns. Frank Van Eynde, Lars Hellan, and Dorothee Beermann, editors, Proceed-
ings of the 8th International Conference on Head-Driven Phrase Structure Grammar,
87–102. URL http://cslipublications.stanford.edu/HPSG/2/hpsg01-toc.
html.

Chomsky, Noam. 1957. Syntactic Structures. Number 4 in Janua Linguarum. The Hague:
Mouton.

Chung, Chan. 1993. Korean auxiliary verb constructions without VP nodes. Susumo Kuno,
Ik-Hwan Lee, John Whitman, Joan Maling, Young-Se Kang, and Young Joo Kim, ed-
itors, Proceedings of the 1993 Workshop on Korean Linguistics, number 5 in Harvard
Studies in Korean Linguistics, 274–286. Cambridge, MA: Harvard University Depart-
ment of Linguistics.

Copestake, Ann. 1992. The ACQUILEX LKB: Representation issues in semi-automatic
acquisition of large lexicons. Proceedings of the Third ACL Conference on Applied

91

Natural Language Processing, 88–96. Trento, Italy. URL http://www.aclweb.org/
anthology/A92-1012.

Covington, Michael A. 1990. A dependency parser for variable-word-order languages.
Technical Report Research Report AI-1990-01, Artificial Intelligence Programs, Univer-
sity of Georgia. URL http://www.ai.uga.edu/ftplib/ai-reports/ai199001.
pdf.

Covington, Michael A. 1992. A dependency parser for variable-word-order languages.
K. R. Billingsley, Hilton U. Brown III, and Ed Derohanes, editors, Computer assisted
modeling on the IBM 3090: Papers from the 1989 IBM Supercomputing Competition,
volume 2, 799–845. Athens, GA: Baldwin Press.

Covington, Michael A. 1994. Discontinuous dependency parsing of free and fixed word
order: Work in progress. Technical Report Research Report AI-1994-02, Artificial In-
telligence Programs, University of Georgia. URL http://www.ai.uga.edu/ftplib/
ai-reports/ai199402.pdf.

Curry, Haskell B. 1961. Some logical aspects of grammatical structure. Structure of Lan-
guage and its Mathematical Aspects: Proceedings of the Twelfth Symposium in Applied
Mathematics, 56–68. Providence: American Mathematical Society.

Daniels, Michael W. and W. Detmar Meurers. 2002. Improving the efficiency of pars-
ing with discontinuous constituents. Shuly Wintner, editor, Proceedings of NLULP-02:
The Seventh International Workshop on Natural Language Understanding and Logic
Programming, 49–68. Copenhagen, Denmark: Roskilde University, Computer Sci-
ence Department. URL http://www.cs.haifa.ac.il/~shuly/nlulp02/papers/
meurers.pdf.

Daniels, MichaelW. andW. Detmar Meurers. 2004a. A grammar formalism and parser
for linearization-based HPSG. Proceedings of the Twentieth International Conference
on Computational Linguistics, 169–175. URL http://www.ling.ohio-state.edu/
~daniels/gidlpparser.pdf.

Daniels, Mike and DetmarMeurers. 2004b. GIDLP: A grammar format for linearization-
based HPSG. Stefan Müller, editor, Proceedings of the Eleventh International Confer-
ence on Head-Driven Phrase Structure Grammar, 93–111. Stanford: CSLI Publications.
URL http://cslipublications.stanford.edu/HPSG/5/.

Davis, Paul C. 2002. Stone Soup Translation: The Linked Automata Model. Ph.D. thesis,
Ohio State University, Columbus, OH. URL http://www.ling.ohio-state.edu/
~pcdavis/papers/diss.html.

Donohue, Cathryn and Ivan A. Sag. 1999. Domains in Warlpiri. Abstracts of the Sixth
Int. Conference on HPSG, 101–106. Edinburgh: University of Edinburgh. URL http:
//www-csli.stanford.edu/~sag/papers/warlpiri.ps.

Dowty, David R. 1982. More on the categorial analysis of grammatical relations. Ohio
State Working Papers in Linguistics, 26.102–133.

Dowty, David R. 1996. Towards a minimalist theory of syntactic structure. Bunt and van
Horck (1996).

Dowty, David R. 1997. Non-constituent coordination, wrapping, and multimodal categorial
grammars. M. L. Dalla Chiara et al., editor, Structures and Norms in Science, 347–368.
Kluwer.

Drach, Erich. 1937. Grundgedanken der deutschen Satzlehre. Frankfurt: Diesterweg.
Earley, Jay. 1970. An efficient context-free parsing algorithm. Communications of the

ACM, 13(2).94–102. Also in Grosz et al. (1986).
Erbach, Gregor. 1997. Bottom-Up Earley Deduction for Preference-Driven Natural Lan-

guage Processing. Ph.D. thesis, Universität des Saarlandes. URL http://www.coli.
uni-sb.de/~erbach/pub/.

92

Flickinger, Dan. 2000. On building a more efficient grammar by exploiting types. Natural
Language Engineering, 6(1).15–28.

Fouvry, Frederik and DetmarMeurers. 2000. Towards a platform for linearization gram-
mars. Erhard W. Hinrichs, Detmar Meurers, and Shuly Wintner, editors, Proceedings of
the Workshop on Linguistic Theory and Grammar Implementation, 153–168. Birming-
ham, UK: ESSLLI 2000. URL http://www.ling.ohio-state.edu/~dm/papers/
fouvry-meurers2000.html.

Fredkin, E. 1960. Trie memory. Communications of the ACM, 3(9).490–499.
Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985. Generalized

Phrase Structure Grammar. Cambridge, MA: Harvard UP.
Gazdar, Gerald and Geoffrey Pullum. 1981. Subcategorization, constituent order, and

the notion head. Michael H. Moortgat, Harry van der Hulst, and Teun Hoekstra, editors,
The Scope of Lexical Rules, 107–123. Dordrecht: Foris.

Gerdemann, Dale. 1991. Parsing and generation of unification grammars. Technical Report
CS-91-06, Beckman Institute, University of Illinois.

Gerdes, Kim and Sylvain Kahane. 2001. Word order in German: A formal depen-
dency grammar using a topological hierarchy. Proceedings of the 39th Annual Meeting
of the Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/P01-1029.

Götz, Thilo and Walt Detmar Meurers. 1995. Compiling HPSG type constraints into
definite clause programs. Proceedings of the 33nd Annual Meeting of the Association
for Computational Linguistics (ACL 95), 85–91. Cambridge, MA: MIT. URL http:
//ling.osu.edu/~dm/papers/acl95.html.

Götz, Thilo and Walt Detmar Meurers. 1997a. The ConTroll system as large grammar
development platform. Proceedings of the Workshop “Computational Environments for
Grammar Development and Linguistic Engineering (ENVGRAM)” held at ACL/EACL,
38–45. Association for Computational Linguistics, Madrid: Universidad Nacional de
Educación a Distancia. URL http://www.aclweb.org/anthology/W97-1506.

Götz, Thilo andWalt Detmar Meurers. 1997b. Interleaving universal principles and re-
lational constraints over typed feature logic. Proceedings of the 35th Annual Meeting of
the ACL and the 8th Conference of the EACL, 1–8. Madrid, Spain: Universidad Nacional
de Educación a Distancia. URL http://www.aclweb.org/anthology/P97-1001.

Grosz, Barbara, Karen Sparck Jones, and Bonnie LynnWebber, editors. 1986. Readings
in Natural Language Processing. Los Altos, CA: Morgan Kaufmann.

Haji-Abdolhosseini, Mohammad and Gerald Penn. 2003. ALE reference manual. URL
http://www.ale.cs.toronto.edu/docs/ref/ale_ref.pdf, ms., Univ. Toronto.

Halpern, Aaron. 1995. On the Placement and Morphology of Clitics. Stanford: CSLI.
Harrison, S. P. and T. M. Ellison. 1992. Restriction and termination in parsing with

feature-theoretic grammars. Computational Linguistics, 18(4).519–530.
Hays, David G. 1964. Dependency theory: A formalism and some observations. Language,

40.511–525.
Hepple, Mark. 1994. Discontinuity and the lambek calculus. Proceedings of the 15th Con-

ference on Computational Linguistics (COLING-94). Kyoto. URL ftp://ftp.dcs.
shef.ac.uk/home/hepple/papers/coling94.ps.

Hinrichs, Erhard, JuliaBartels, YasuhiroKawata, ValiaKordoni, andHeike Telljohann.
2000. The Tübingen treebanks for spoken German, English, and Japanese. Wolfgang
Wahlster, editor, Verbmobil: Foundations of Speech-to-Speech Translation, 552–576.
Berlin: Springer.

Hinrichs, Erhard and Tsuneko Nakazawa. 1990. Subcategorization and VP structure in
German. Unpublished Manuscript. From a talk delivered at the Third Symposium on
Germanic Linguistics.

93

Höhle, Tilman. 1978. Lexikalistische Syntax: Die Aktiv-Passiv-Relation und andere In-
finitkonstruktionen im Deutschen. Tübingen: Max Niemeyer Verlag.

Höhle, Tilman. 1986. Der Begriff “Mittelfeld”: Anmerkungen über die Theorie der topolo-
gischen Felder. Kontroversen, alte und neue: Akten des 7. Internationalen Germanisten-
Kongresses, Göttingen 1985, Band 3, 329–340. Tübingen: Niemeyer.

Huck, Geoffrey. 1985. Exclusivity and discontinuity in phrase structure grammar. West
Coast Conference on Formal Linguistics (WCCFL), volume 4, 92–98. Stanford Univer-
sity, CSLI Publications.

Huck, Geoffrey and Almerindo Ojeda, editors. 1987. Discontinuous Constituency. Num-
ber 20 in Syntax and Semantics. New York: Academic Press.

Huynh, Dung T. 1983. Commutative grammars: The complexity of uniform word prob-
lems. Information and Control, 57(1).21–39.

Jackendoff, Ray. 1977. X-Bar Syntax: A Study of Phrase Structure. Cambridge, Mass.:
MIT Press.

Johnson, Mark. 1985. Parsing with discontinuous constituents. Proceedings of the 23rd
Annual Meeting of the Association for Computational Linguistics, 127–132. Chicago.
URL http://www.aclweb.org/anthology/P85-1015.

Jourdan, Martin andDidier Parigot. 1990. Techniques for improving grammar flow analy-
sis. Neil Jones, editor, European Symposium on Programming, volume 432 of Lec-
ture Notes in Computer Science, 240–255. Copenhagen: Springer-Verlag. URL http:
//www-rocq.inria.fr/oscar/ftp/fnc2/publications/esop90-t.ps.gz.

Kasami, T. and K. Torii. 1969. A syntax-analysis procedure for unambiguous context-free
grammars. Journal of the Association for Computing Machinery, 16(3).423–431.

Kasper, Robert, Andreas Kathol, and Carl Pollard. 1995. A relational interpretation of
linear precedence constraints. The Ohio State University.

Kathol, Andreas. 1995. Linearization-Based German Syntax. Ph.D. thesis, The Ohio State
University.

Kathol, Andreas. 2000. Linear Syntax. Oxford: Oxford University Press.
Kathol, Andreas and Carl Pollard. 1995. Extraposition via complex domain formation.

Proceedings of the 33rd Annual Meeting of the Association for Computational Linguis-
tics, 174–180. URL http://www.aclweb.org/anthology/P95-1024.

Kay, Martin. 1980. Algorithm schemata and data structures in syntactic processing. Grosz
et al. (1986), 35–70.

Kiss, Tibor. 1995. Infintive Komplementation. Number 333 in Linguistische Arbeiten.
Tübingen: Max Niemeyer Verlag.

Koch, Ulrich. 1993. The enhancement of a dependency parser for latin. Technical Report
Research Report AI-1993-03, Artificial Intelligence Programs, University of Georgia.
URL http://www.ai.uga.edu/ftplib/ai-reports/ai199303.pdf.

Kroch, Anthony S. andAravindK. Joshi. 1987. Analyzing extraposition in a tree adjoining
grammar. Huck and Ojeda (1987).

Lee, Sun-Hee. 1999. Argument composition and linearization in Korean noun-verb com-
plex predicate constructions. Amalia Todirascu, editor, Proceedings of the ESSLLI Stu-
dent Session 1999, 65–78. Utrecht University.

Lewis, Harry R. and Christos H. Papadimitriou. 1998. Elements of the Theory of Compu-
tation. Upper Saddle River, NJ: Prentice-Hall, second edition.

Maekawa, Takafumi. 2004. Constituency, word order and focus projection. Stefan
Müller, editor, Proceedings of the Eleventh International Conference on Head-Driven
Phrase Structure Grammar, 168–188. Stanford: CSLI Publications. URL http:
//cslipublications.stanford.edu/HPSG/5/.

94

Malouf, Rob, John Carroll, and Ann Copestake. 2000. Efficient feature structure oper-
ations without compilation. Natural Language Engineering, 6(1).29–46. Reprinted in
(Oepen et al. 2002), 105–125.

McCawley, James D. 1982. Parentheticals and discontinuous constituent structure. Lin-
guistic Inquiry, 13(1).91–106.

Meurers, Walt Detmar. 1999. Lexical Generalizations in the Syntax of German Non-
Finite Constructions. Ph.D. thesis, Seminar für Sprachwissenschaft, Universität Tübin-
gen, Tübingen, Germany. URL http://ling.osu.edu/~dm/papers/diss.html,
published 2000 as Volume 145 in Arbeitspapiere des SFB 340, ISSN 0947-6954/00.

Möncke, Ulrich and Reinhard Wilhelm. 1982. Iterative algorithms on grammar graphs.
H. J. Schneider and Herbert Göttler, editors, Conference on Graphtheoretic Concepts in
Computer Science, 177–194. München: Hanser Verlag.

Morawietz, Frank. 1995. Formalization and parsing of unification–based id/lp grammars.
Arbeitspapiere des SFB 340. Nr. 68, Universität Tübingen. URL http://www.sfs.
uni-tuebingen.de/sfb/reports/berichte/68/68abs.html.

Morrill, GlynnV. 1995. Discontinuity in categorial grammar. Linguistics and Philosophy,
18.175–219.

Müller, Stefan. 1997. Yet another paper about partial verb phrase fronting in German.
Research Report RR-97-07, Deutsches Forschungszentrum für Künstliche Intelligenz,
Saarbrücken. URL http://www.cl.uni-bremen.de.de/~stefan/Pub/pvp.html.

Müller, Stefan. 1999a. Deutsche Syntax deklarativ: Head-Driven Phrase Structure Gram-
mar für das Deutsche. Number 394 in Linguistische Arbeiten. Tübingen: Niemeyer.

Müller, Stefan. 1999b. Restricting discontinuity. Verbmobil Report 237, DFKI, Saarbrük-
ken. URL http://www.dfki.de/~stefan/Pub/e_restricting.html, also pub-
lished in the Proceedings of GLDV 99 (Frankfurt/Main).

Müller, Stefan. 2004. Continuous or discontinuous constituents? A comparison be-
tween syntactic analyses for constituent order and their processing systems. Research
on Language and Computation, Special Issue on Linguistic Theory and Grammar Im-
plementation, 2(2).209–257. URL http://www.cl.uni-bremen.de/~stefan/Pub/
discont.html.

Nerbonne, John. 1986. ‘Phantoms’ and German fronting: Poltergeist constituents. Lin-
guistics, 24(5).857–870.

Nerbonne, John. 1994. Partial verb phrases and spurious ambiguities. Nerbonne et al.
(1994), 109–150.

Nerbonne, John, KlausNetter, and Carl Pollard, editors. 1994. German in Head-Driven
Phrase Structure Grammar. Number 46 in CSLI Lecture Notes. Stanford, CA: CSLI
Publications.

Oepen, Stephan and John Carroll. 2000. Ambiguity packing in constraint-based parsing:
Practical results. Proceedings of the 1st Meeting of the North American Chapter of the
Association for Computational Linguistics, 162–169. Seattle, WA. URL http://www.
aclweb.org/anthology/A00-2022.

Oepen, Stephan, Dan Flickinger, Jun-Ichi Tsujii, and Hans Uszkoreit, editors. 2002. Col-
laborative Language Engineering: A Case Study in Efficient Grammar-Based Process-
ing. Number 118 in CSLI Lecture Notes. Stanford: CSLI.

Ojeda, Almerindo. 1987. Discontinuity, multidominances and unbounded dependency in
generalized phrase structure grammar. Huck and Ojeda (1987).

Partee, BarbaraH., Alice terMeulen, and Robert E. Wall. 1990. Mathematical Methods
in Linguistics. Springer.

Penn, Gerald. 1999. A generalized-domain-based approach to Serbo-Croatian second po-
sition clitic placement. Gosse Bouma, Erhard Hinrichs, Geert-Jan Kruijff, and Richard

95

Oehrle, editors, Constraints and Resources in Natural Language Syntax and Semantics,
119–136. CSLI.

Penn, Gerald and Mohammad Haji-Abdolhosseini. 2003. Topological parsing. Proceed-
ings of the Tenth Conference of the European Chapter of the Association for Computa-
tional Linguistics (EACL-03), 283–290. URL http://www.aclweb.org/anthology/
E03-1039.

Pereira, Fernando andDavidWarren. 1983. Parsing as deduction. 21st Annual Meeting of
the Association for Computational Linguistics, 137–144. Cambridge, MA. URL http:
//www.aclweb.org/anthology/P83-1021.

Plátek, Martin, Tomáš Holan, Vladimir Kuboň, and Karel Oliva. 2001. Word-order re-
laxations and restrictions within a dependency grammar. G. Satta, editor, Proceedings of
the Seventh International Workshop on Parsing Technologies (IWPT), 237–240. Beijing:
Tsinghua University Press.

Pollard, Carl, Robert Kasper, and Robert Levine. 1994. Studies in constituent ordering:
Towards a theory of linearization in head-driven phrase structure grammar. Unpublished
research proposal to the National Science Foundation.

Pollard, Carl and Ivan Sag. 1983. Reflexives and reciprocals in English: An alternative
to the binding theory. M. Barton, D. Flickenger, and M. Westcott, editors, Proceedings
of the West Coast Conference on Formal Linguistics, 189–203.

Pollard, Carl J. 1984. Generalized Phrase Structure Grammars, Head Grammars, and
Natural Language. Dissertation, Stanford University, Stanford, CA.

Pollard, Carl J. and Ivan A. Sag. 1987. Information-based Syntax and Semantics. Volume
1: Fundamentals. Number 13 in CSLI Lecture Notes. Stanford, CA: Center for the
Study of Language and Information.

Pollard, Carl J. and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar.
Chicago: University of Chicago Press.

Postal, Paul. 1964. Constituent structure: A study of contemporary models of syntactic
description. International Journal of American Linguistics, 30(1).part III.

Przepiórkowski, Adam. 2001. arg-st on phrases: Evidence from Polish. Dan Flickinger
and Andreas Kathol, editors, Proceedings of the 7th International Conference on Head-
Driven Phrase Structure Grammar, 267–284. Stanford, CA: Center for the Study of Lan-
guage and Information. URL http://cslipublications.stanford.edu/HPSG/1/
hpsg00.html.

Pullum, Geoffrey. 1982. Free word order and phrase structure rules. Proceedings of the
North Eastern Linguistic Society, volume 12, 209–220.

Rambow, Owen and Aravind Joshi. 1994. A formal look at dependency grammars
and phrase-structure grammars, with special consideration of word-order phenomena.
L. Wanner, editor, Current Issues in Meaning-Text-Theory. London: Pinter. URL
http://arxiv.org/abs/cmp-lg/9410007.

Ramsay, Allan M. 1999. Direct parsing with discontinuous phrases. Natural Language
Engineering, 5(3).271–300.

Reape, Mike. 1989. A logical treatment of semi-free word order and bounded discontin-
uous constituency. Proceedings of the Fourth Meeting of the European Association for
Computational Linguistics, 103–110. URL http://www.aclweb.org/anthology/
E89-1014.

Reape, Mike. 1990. A theory of word order and discontinuous constituency in west con-
tinental germanic. Elisabeth Engdahl and Mike Reape, editors, Parametric Variation
in Germanic and Romance: Preliminary Investigations, DYANA R1.1.A, ESPRIT BR
3175, 25–39. Edinburgh: Centre for Cognitive Science, University of Edinburgh.

Reape, Mike. 1991a. Parsing bounded discontinuous constituents: Generalisations of some
common algorithms. Reape (1991b), 41–70.

96

Reape, Mike, editor. 1991b. Word Order in Germanic and Parsing. Centre for Cognitive
Science, University of Edinburgh.

Reape, Mike. 1993. A Formal Theory of Word Order: A Case Study in West Germanic.
PhD thesis., Univ. of Edinburgh.

Reape, Mike. 1994. Domain union and word order variation in German. Nerbonne et al.
(1994), 151–197.

Reape, Mike. 1996. Getting things in order. Bunt and van Horck (1996), 209–253. Pub-
lished version of a Ms. from 1990.

Rentier, Gerrit. 1994. Dutch cross serial dependencies in HPSG. Proceedings of the
15th International Conference on Computational Linguistics, 818–822. URL http:
//www.aclweb.org/anthology/C94-2130.

Richter, Frank andManfred Sailer. 1995. Remarks on Linearization: Reflections on the
Treatment of LP-Rules in HPSG in a Typed Feature Logic. Master’s thesis, University of
Tübingen. URL http://www.sfs.uni-tuebingen.de/~fr/cards/thesis.html.

Richter, Frank and Manfred Sailer. 2001. On the left periphery of German finite sen-
tences. Detmar Meurers and Tibor Kiss, editors, Constraint-Based Approaches to Ger-
manic Syntax, Studies in Constraint-Based Lexicalism, 257–300. Stanford, CA: CSLI.

Robinson, Jane J. 1970. Dependency structures and transformation rules. Language,
46.259–285.

Sag, Ivan. 1999. Deconstructing grammatical constructions. Ms, Stanford University.
Seiffert, Roland. 1987. Chart-parsing of unification-based grammars with ID/LP-rules.

E. Klein and J. van Benthem, editors, Categories, Polymorphism, and Unification, 335–
354. Edinburgh/Amsterdam: CCS/ILLI.

Seiffert, Roland. 1991. Unification–ID/LP grammars: Formalization and parsing. Otthein
Herzog and Claus-Rolf Rollinger, editors, Text Understanding in LILOG, number 546 in
Lecture Notes in Artificial Intelligence, 63–73. Berlin: Springer Verlag.

Shieber, Stuart. 1985. Using restriction to extend parsing algorithms for complex-
feature-based formalisms. Proceedings of the 23rd Annual Meeting of the Association
for Computational Linguistics, 145–52. Chicago. URL http://www.aclweb.org/
anthology/P85-1018.

Shieber, StuartM. 1984. Direct parsing of ID/LP grammars. Linguistics and Philosophy,
7.135–154.

Siegel, Melanie. 2000. HPSG analysis of Japanese. Wolfgang Wahlster, editor, Verbmobil:
Foundations of Speech-To-Speech Translation, 265–280. Heidelberg: Springer.

Skut, Wojciech, Brigitte Krenn, Thorsten Brants, and Hans Uszkoreit. 1997. An an-
notation scheme for free word order languages. Proceedings of the 5th Conference
on Applied Natural Language Processing (ANLP). Washington, D.C. URL http:
//www.aclweb.org/anthology/A97-1014.

Suhre, Oliver. 1999. Computational Aspects of a Grammar Formalism for Languages
with Freer Word Order. Diplomarbeit, Department of Computer Science, University of
Tübingen. URL http://www.sfs.uni-tuebingen.de/sfb/reports/berichte/
154/154abs.html, published 2000 as Volume 154 in Arbeitspapiere des SFB 340.

Tesnière, Lucien. 1959. Eléments de Syntaxe Structurale. Paris: Klincksiek.
Tomabechi, Hideto. 1995. Design of efficient unification for natural language. Journal of

Natural Language Processing, 2(2).23–58.
van der Sloot, Ko. 1989. The TENDUM 2.7 parsing algorithm for DPSG. Unpublished

manuscript.
van Noord, Gertjan. 1991. Head corner parsing for discontinuous constituency. Pro-

ceedings of the 29th Annual Meeting of the Association for Computational Linguistics,
114–121. URL http://www.aclweb.org/anthology/P91-1015.

97

van Noord, Gertjan. 1997. An efficient implementation of the head-corner parser. Com-
putational Linguistics, 23(3).425–456.

Vogel, CarlM. and Tomaž Erjavec. 1994. Restricted discontinuous phrase structure gram-
mar and its ramafications. Carlos Martin-Vide, editor, Current Issues in Mathematical
Linguistics, 131–140. Amsterdam: Elsevier Science B.V.

Volk, Martin. 1996. Parsing with ID/LP and PS rules. Natural Language Processing
and Speech Technology. Results of the 3rd KONVENS Conference (Bielefeld), 342–353.
Berlin: Mouton de Gruyter.

Wells, Rulon S. 1947. Immediate constituents. Language, 23(2).81–117.
Yatabe, Shuichi. 1996. Long-distance scrambling via partial compaction. Masatoshi

Koizumi, Masayuki Oishi, and Uli Sauerland, editors, Formal Approaches to Japanese
Linguistics 2, 303–317. Cambridge, MA: MITWPL. URL http://gamp.c.u-tokyo.
ac.jp/~yatabe/fajl.pdf.

Younger, D. H. 1967. Recognition and parsing of context-free languages in time n3. In-
formation and Control, 10.189–208.

Zwicky, Arnold. 1986. Concatentation and liberation. Papers from the 22nd Regional
Meeting, 65–74. Chicago Linguistic Society.

98

Citation Index

Bach (1983), 1, 91
Blevins (1990), 1, 5, 82, 91
Bloomfield (1933), 3, 91
Bonami et al. (1999), 1, 91
Bröker (1998), 1, 91
Bunt and van Horck (1996), 91, 92, 97
Bunt and van der Sloot (1996), 25, 91
Bunt (1991), 25, 91
Callmeier (2001), 82, 91
Campbell-Kibler (2002), 10, 91
Chomsky (1957), 4, 91
Chung (1993), 18, 91
Copestake (1992), 1, 83, 91
Covington (1990), 22, 24, 92
Covington (1992), 24, 92
Covington (1994), 24, 92
Curry (1961), 33, 92
Daniels and Meurers (2002), 33, 41, 92
Daniels and Meurers (2004a), 33, 41, 92
Daniels and Meurers (2004b), 33, 92
Davis (2002), 44, 92
Donohue and Sag (1999), 1, 15, 92
Dowty (1982), 1, 92
Dowty (1996), 1, 92
Dowty (1997), 14, 92
Drach (1937), 12, 92
Earley (1970), 41, 84, 92
Erbach (1997), 70, 92
Flickinger (2000), 83, 92
Fouvry and Meurers (2000), 32, 93
Fredkin (1960), 89, 93
Götz and Meurers (1995), 1, 93
Götz and Meurers (1997a), 1, 93
Götz and Meurers (1997b), 1, 93
Gazdar and Pullum (1981), 4, 15, 93
Gazdar et al. (1985), 4, 93
Gerdemann (1991), 72, 93
Gerdes and Kahane (2001), 26–28, 30, 93
Grosz et al. (1986), 92–94
Höhle (1978), 20, 93

Haji-Abdolhosseini and Penn (2003), 1, 50,
83, 93

Halpern (1995), 14, 93
Harrison and Ellison (1992), x, 71, 73, 74,

93
Hays (1964), 24, 93
Hepple (1994), 1, 93
Hinrichs and Nakazawa (1990), 17, 93
Hinrichs et al. (2000), 1, 93
Huck and Ojeda (1987), 94, 95
Huck (1985), 1, 94
Huynh (1983), 82, 94
Höhle (1986), 12, 94
Jackendoff (1977), 82, 94
Johnson (1985), 21, 43, 44, 94
Jourdan and Parigot (1990), 51, 94
Kasami and Torii (1969), 42, 94
Kasper et al. (1995), 34, 78, 94
Kathol and Pollard (1995), 10, 94
Kathol (1995), 1, 10, 12, 94
Kathol (2000), 12, 17, 35, 94
Kay (1980), 41, 94
Kiss (1995), 18, 94
Koch (1993), 24, 94
Kroch and Joshi (1987), 1, 94
Lee (1999), 10, 94
Lewis and Papadimitriou (1998), 38, 94
Müller (1997), 18, 95
Müller (1999a), 1, 95
Müller (1999b), 82, 95
Müller (2004), 1, 18, 80, 95
Maekawa (2004), 10, 94
Malouf et al. (2000), 73, 94
McCawley (1982), 1, 4, 95
Meurers (1999), 18, 95
Morawietz (1995), 75, 77, 79, 95
Morrill (1995), 1, 95
Möncke and Wilhelm (1982), 51, 52, 95
Nerbonne et al. (1994), 95, 97
Nerbonne (1986), 17, 95

99

Nerbonne (1994), 10, 95
Oepen and Carroll (2000), 48, 95
Oepen et al. (2002), 95
Ojeda (1987), 1, 95
Partee et al. (1990), 4, 95
Penn and Haji-Abdolhosseini (2003), 30, 31,

96
Penn (1999), 1, 14, 95
Pereira and Warren (1983), 70, 96
Plátek et al. (2001), 1, 96
Pollard and Sag (1983), 6, 96
Pollard and Sag (1987), 6, 96
Pollard and Sag (1994), 1, 96
Pollard et al. (1994), 1, 17, 96
Pollard (1984), 1, 6, 14, 96
Postal (1964), 4, 96
Przepiórkowski (2001), 20, 96
Pullum (1982), 5, 96
Rambow and Joshi (1994), 1, 96
Ramsay (1999), 44, 96
Reape (1989), 1, 6, 96
Reape (1990), 1, 6, 96
Reape (1991a), 22, 44, 96
Reape (1991b), 1, 6, 96
Reape (1993), 1, 6, 97
Reape (1994), 1, 6, 97
Reape (1996), 1, 6, 97
Rentier (1994), 18, 97
Richter and Sailer (1995), 1, 97
Richter and Sailer (2001), 1, 97
Robinson (1970), 22, 97
Sag (1999), 16, 97
Seiffert (1987), 74, 97
Seiffert (1991), x, 74, 76, 97
Shieber (1984), 5, 97
Shieber (1985), 69, 71, 97
Siegel (2000), 83, 97
Skut et al. (1997), 1, 97
Suhre (1999), 31, 33, 36, 44, 82, 83, 97
Tesnière (1959), 22, 24, 97
Tomabechi (1995), 72, 97
Vogel and Erjavec (1994), 25, 98
Volk (1996), 44, 84, 85, 98
Wells (1947), 3, 98
Yatabe (1996), 10, 98
Younger (1967), 42, 98
Zwicky (1986), 7, 98
van Noord (1991), 21, 22, 97
van Noord (1997), 81, 97
van der Sloot (1989), 25, 97

100

